Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = magnetorheological plastomer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7408 KiB  
Systematic Review
Sensors and Sensing Devices Utilizing Electrorheological Fluids and Magnetorheological Materials—A Review
by Yu-Jin Park and Seung-Bok Choi
Sensors 2024, 24(9), 2842; https://doi.org/10.3390/s24092842 - 29 Apr 2024
Cited by 7 | Viewed by 2732
Abstract
This paper comprehensively reviews sensors and sensing devices developed or/and proposed so far utilizing two smart materials: electrorheological fluids (ERFs) and magnetorheological materials (MRMs) whose rheological characteristics such as stiffness and damping can be controlled by external stimuli; an electrical voltage for ERFs [...] Read more.
This paper comprehensively reviews sensors and sensing devices developed or/and proposed so far utilizing two smart materials: electrorheological fluids (ERFs) and magnetorheological materials (MRMs) whose rheological characteristics such as stiffness and damping can be controlled by external stimuli; an electrical voltage for ERFs and a magnetic field for MRMs, respectively. In this review article, the MRMs are classified into magnetorheological fluids (MRF), magnetorheological elastomers (MRE) and magnetorheological plastomers (MRP). To easily understand the history of sensing research using these two smart materials, the order of this review article is organized in a chronological manner of ERF sensors, MRF sensors, MRE sensors and MRP sensors. Among many sensors fabricated from each smart material, one or two sensors or sensing devices are adopted to discuss the sensing configuration, working principle and specifications such as accuracy and sensitivity. Some sensors adopted in this article include force sensors, tactile devices, strain sensors, wearable bending sensors, magnetometers, display devices and flux measurement sensors. After briefly describing what has been reviewed in a conclusion, several challenging future works, which should be undertaken for the practical applications of sensors or/and sensing devices, are discussed in terms of response time and new technologies integrating with artificial intelligence neural networks in which several parameters affecting the sensor signals can be precisely and optimally tuned. It is sure that this review article is very helpful to potential readers who are interested in creative sensors using not only the proposed smart materials but also different types of smart materials such as shape memory alloys and active polymers. Full article
(This article belongs to the Special Issue Feature Review Papers in Physical Sensors)
Show Figures

Figure 1

15 pages, 5281 KiB  
Article
The Effect of Graphite Additives on Magnetization, Resistivity and Electrical Conductivity of Magnetorheological Plastomer
by Nursyafiqah Zaini, Norzilawati Mohamad, Saiful Amri Mazlan, Siti Aishah Abdul Aziz, Seung-Bok Choi, Norhiwani Mohd Hapipi, Nur Azmah Nordin, Nurhazimah Nazmi and Ubaidillah Ubaidillah
Materials 2021, 14(23), 7484; https://doi.org/10.3390/ma14237484 - 6 Dec 2021
Cited by 6 | Viewed by 2804
Abstract
Common sensors in many applications are in the form of rigid devices that can react according to external stimuli. However, a magnetorheological plastomer (MRP) can offer a new type of sensing capability, as it is flexible in shape, soft, and responsive to an [...] Read more.
Common sensors in many applications are in the form of rigid devices that can react according to external stimuli. However, a magnetorheological plastomer (MRP) can offer a new type of sensing capability, as it is flexible in shape, soft, and responsive to an external magnetic field. In this study, graphite (Gr) particles are introduced into an MRP as an additive, to investigate the advantages of its electrical properties in MRPs, such as conductivity, which is absolutely required in a potential sensor. As a first step to achieve this, MRP samples containing carbonyl iron particles (CIPs) and various amounts of of Gr, from 0 to 10 wt.%, are prepared, and their magnetic-field-dependent electrical properties are experimentally evaluated. After the morphological aspect of Gr–MRP is characterized using environmental scanning electron microscopy (ESEM), the magnetic properties of MRP and Gr–MRP are evaluated via a vibrating sample magnetometer (VSM). The resistivities of the Gr–MRP samples are then tested under various applied magnetic flux densities, showing that the resistivity of Gr–MRP decreases with increasing of Gr content up to 10 wt.%. In addition, the electrical conductivity is tested using a test rig, showing that the conductivity increases as the amount of Gr additive increases, up to 10 wt.%. The conductivity of 10 wt.% Gr–MRP is found to be highest, at 178.06% higher than the Gr–MRP with 6 wt.%, for a magnetic flux density of 400 mT. It is observed that with the addition of Gr, the conductivity properties are improved with increases in the magnetic flux density, which could contribute to the potential usefulness of these materials as sensing detection devices. Full article
Show Figures

Figure 1

15 pages, 3904 KiB  
Article
Dual Properties of Polyvinyl Alcohol-Based Magnetorheological Plastomer with Different Ratio of DMSO/Water
by Norhiwani Mohd Hapipi, Saiful Amri Mazlan, Ubaidillah Ubaidillah, Siti Aishah Abdul Aziz, Seung-Bok Choi, Nur Azmah Nordin, Nurhazimah Nazmi, Zhengbin Pang and Shahir Mohd Yusuf
Sensors 2021, 21(22), 7758; https://doi.org/10.3390/s21227758 - 22 Nov 2021
Cited by 2 | Viewed by 3036
Abstract
Polyvinyl alcohol (PVA)-based magnetorheological plastomer (MRP) possesses excellent magnetically dependent mechanical properties such as the magnetorheological effect (MR effect) when exposed to an external magnetic field. PVA-based MRP also shows a shear stiffening (ST) effect, which is very beneficial in fabricating pressure sensor. [...] Read more.
Polyvinyl alcohol (PVA)-based magnetorheological plastomer (MRP) possesses excellent magnetically dependent mechanical properties such as the magnetorheological effect (MR effect) when exposed to an external magnetic field. PVA-based MRP also shows a shear stiffening (ST) effect, which is very beneficial in fabricating pressure sensor. Thus, it can automatically respond to external stimuli such as shear force without the magnetic field. The dual properties of PVA-based MRP mainly on the ST and MR effect are rarely reported. Therefore, this work empirically investigates the dual properties of this smart material under the influence of different solvent compositions (20:80, 40:60, 60:40, and 80:20) by varying the ratios of binary solvent mixture (dimethyl sulfoxide (DMSO) to water). Upon applying a shear stress with excitation frequencies from 0.01 to 10 Hz, the storage modulus (G′) for PVA-based MRP with DMSO to water ratio of 20:40 increases from 6.62 × 10−5 to 0.035 MPa. This result demonstrates an excellent ST effect with the relative shear stiffening effect (RSTE) up to 52,827%. In addition, both the ST and MR effect show a downward trend with increasing DMSO content to water. Notably, the physical state of hydrogel MRP could be changed with different solvent ratios either in the liquid-like or solid-like state. On the other hand, a transient stepwise experiment showed that the solvent’s composition had a positive effect on the arrangement of CIPs within the matrix as a function of the external magnetic field. Therefore, the solvent ratio (DMSO/water) can influence both ST and MR effects of hydrogel MRP, which need to be emphasized in the fabrication of hydrogel MRP for appropriate applications primarily with soft sensors and actuators for dynamic motion control. Full article
Show Figures

Figure 1

15 pages, 4079 KiB  
Article
The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer
by Norhiwani Mohd Hapipi, Saiful Amri Mazlan, U. Ubaidillah, Koji Homma, Siti Aishah Abdul Aziz, Nur Azmah Nordin, Irfan Bahiuddin and Nurhazimah Nazmi
Polymers 2020, 12(10), 2332; https://doi.org/10.3390/polym12102332 - 13 Oct 2020
Cited by 17 | Viewed by 4006
Abstract
The freezing–thawing method has been commonly used in the preparation of polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP). However, this method is complex and time consuming as it requires high energy consumption and precise temperature control. In this study, PVA HMRP was prepared [...] Read more.
The freezing–thawing method has been commonly used in the preparation of polyvinyl alcohol hydrogel magnetorheological plastomer (PVA HMRP). However, this method is complex and time consuming as it requires high energy consumption and precise temperature control. In this study, PVA HMRP was prepared using a chemically crosslinked method, where borax is used as crosslinking agent capable of changing the rheological properties of the material. Three samples of PVA HMRP with various contents of carbonyl iron particles (CIPs) (50, 60, and 70 wt.%) were used to investigate their rheological properties in both steady shear and dynamic oscillation modes. Results showed the occurrence of shear thickening behaviour at low shear rate (γ > 1 s−1), where the viscosity increased with the increased of shear rate. Moreover, the storage modulus of the samples also increased increasing the oscillation frequency from 0.1 to 100 Hz. Interestingly, the samples with 50, 60 70 wt.% of CIPs produced large relative magnetorheological (MR) effects at 4916%, 6165%, and 10,794%, respectively. Therefore, the inclusion of borax to the PVA HMRP can offer solutions for a wide range of applications, especially in artificial muscle, soft actuators, and biomedical sensors. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Biomedical Applications of Hydrogels)
Show Figures

Figure 1

18 pages, 7726 KiB  
Article
Solvent Dependence of the Rheological Properties in Hydrogel Magnetorheological Plastomer
by Norhiwani Mohd Hapipi, Saiful Amri Mazlan, U. Ubaidillah, Siti Aishah Abdul Aziz, Muntaz Hana Ahmad Khairi, Nur Azmah Nordin and Nurhazimah Nazmi
Int. J. Mol. Sci. 2020, 21(5), 1793; https://doi.org/10.3390/ijms21051793 - 5 Mar 2020
Cited by 12 | Viewed by 3624
Abstract
Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content [...] Read more.
Chemically crosslinked hydrogel magnetorheological (MR) plastomer (MRP) embedded with carbonyl iron particles (CIPs) exhibits excellent magnetic performance (MR effect) in the presence of external stimuli especially magnetic field. However, oxidation and desiccation in hydrogel MRP due to a large amount of water content as a dispersing phase would limit its usage for long-term applications, especially in industrial engineering. In this study, different solvents such as dimethyl sulfoxide (DMSO) are also used to prepare polyvinyl alcohol (PVA) hydrogel MRP. Thus, to understand the dynamic viscoelastic properties of hydrogel MRP, three different samples with different solvents: water, DMSO, and their binary mixtures (DMSO/water) were prepared and systematically carried out using the oscillatory shear. The outcomes demonstrate that the PVA hydrogel MRP prepared from precursor gel with water shows the highest MR effect of 15,544% among the PVA hydrogel MRPs. However, the samples exhibit less stability and tend to oxidise after a month. Meanwhile, the samples with binary mixtures (DMSO/water) show an acceptable MR effect of 11,024% with good stability and no CIPs oxidation. Otherwise, the sample with DMSO has the lowest MR effect of 7049% and less stable compared to the binary solvent samples. This confirms that the utilisation of DMSO as a new solvent affects the rheological properties and stability of the samples. Full article
(This article belongs to the Special Issue Advanced Polymer Composite Materials)
Show Figures

Figure 1

Back to TopTop