Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = magnesium cobalt hydride

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4833 KiB  
Article
Effect of LaCoO3 Synthesized via Solid-State Method on the Hydrogen Storage Properties of MgH2
by Noratiqah Sazelee, Muhamad Faiz Md Din, Mohammad Ismail, Sami-Ullah Rather, Hisham S. Bamufleh, Hesham Alhumade, Aqeel Ahmad Taimoor and Usman Saeed
Materials 2023, 16(6), 2449; https://doi.org/10.3390/ma16062449 - 19 Mar 2023
Cited by 22 | Viewed by 2490
Abstract
One of the ideal energy carriers for the future is hydrogen. It has a high energy density and is a source of clean energy. A crucial step in the development of the hydrogen economy is the safety and affordable storage of a large [...] Read more.
One of the ideal energy carriers for the future is hydrogen. It has a high energy density and is a source of clean energy. A crucial step in the development of the hydrogen economy is the safety and affordable storage of a large amount of hydrogen. Thus, owing to its large storage capacity, good reversibility, and low cost, Magnesium hydride (MgH2) was taken into consideration. Unfortunately, MgH2 has a high desorption temperature and slow ab/desorption kinetics. Using the ball milling technique, adding cobalt lanthanum oxide (LaCoO3) to MgH2 improves its hydrogen storage performance. The results show that adding 10 wt.% LaCoO3 relatively lowers the starting hydrogen release, compared with pure MgH2 and milled MgH2. On the other hand, faster ab/desorption after the introduction of 10 wt.% LaCoO3 could be observed when compared with milled MgH2 under the same circumstances. Besides this, the apparent activation energy for MgH2–10 wt.% LaCoO3 was greatly reduced when compared with that of milled MgH2. From the X-ray diffraction analysis, it could be shown that in-situ forms of MgO, CoO, and La2O3, produced from the reactions between MgH2 and LaCoO3, play a vital role in enhancing the properties of hydrogen storage of MgH2. Full article
(This article belongs to the Special Issue Advance Materials for Hydrogen Storage)
Show Figures

Figure 1

18 pages, 4305 KiB  
Article
Influence of Nanosized CoTiO3 Synthesized via a Solid-State Method on the Hydrogen Storage Behavior of MgH2
by Nurul Amirah Ali, Muhammad Syarifuddin Yahya, Noratiqah Sazelee, Muhamad Faiz Md Din and Mohammad Ismail
Nanomaterials 2022, 12(17), 3043; https://doi.org/10.3390/nano12173043 - 1 Sep 2022
Cited by 52 | Viewed by 3089
Abstract
Magnesium hydride (MgH2) has received outstanding attention as a safe and efficient material to store hydrogen because of its 7.6 wt.% hydrogen content and excellent reversibility. Nevertheless, the application of MgH2 is obstructed by its unfavorable thermodynamic stability and sluggish [...] Read more.
Magnesium hydride (MgH2) has received outstanding attention as a safe and efficient material to store hydrogen because of its 7.6 wt.% hydrogen content and excellent reversibility. Nevertheless, the application of MgH2 is obstructed by its unfavorable thermodynamic stability and sluggish sorption kinetic. To overcome these drawbacks, ball milling MgH2 is vital in reducing the particle size that contribute to the reduction of the decomposition temperature. However, the milling process would become inefficient in reducing particle sizes when equilibrium between cold-welding and fracturing is achieved. Therefore, to further ameliorate the performance of MgH2, nanosized cobalt titanate (CoTiO3) has been synthesized using a solid-state method and was introduced to the MgH2 system. The different weight percentages of CoTiO3 were doped to the MgH2 system, and their catalytic function on the performance of MgH2 was scrutinized in this study. The MgH2 + 10 wt.% CoTiO3 composite presents the most outstanding performance, where the initial decomposition temperature of MgH2 can be downshifted to 275 °C. Moreover, the MgH2 + 10 wt.% CoTiO3 absorbed 6.4 wt.% H2 at low temperature (200 °C) in only 10 min and rapidly releases 2.3 wt.% H2 in the first 10 min, demonstrating a 23-times-faster desorption rate than as-milled MgH2 at 300 °C. The desorption activation energy of the 10 wt.% CoTiO3-doped MgH2 sample was dramatically lowered by 30.4 kJ/mol compared to undoped MgH2. The enhanced performance of the MgH2–CoTiO3 system is believed to be due to the in situ formation of MgTiO3, CoMg2, CoTi2, and MgO during the heating process, which offer a notable impact on the behavior of MgH2. Full article
Show Figures

Figure 1

11 pages, 3511 KiB  
Article
In Situ Formation of Metal Hydrides Inside Carbon Aerogel Frameworks for Hydrogen Storage Applications
by Mohammad Reza Ghaani, Mahdi Alam, Michele Catti and Niall J. English
C 2020, 6(2), 38; https://doi.org/10.3390/c6020038 - 9 Jun 2020
Cited by 6 | Viewed by 3925
Abstract
Nano-confined chemical reactions bear great promise for a wide range of important applications in the near-to-medium term, e.g., within the emerging area of chemical storage of renewable energy. To explore this important trend, in the present work, resorcinol-/formaldehyde-based carbon aerogels were prepared by [...] Read more.
Nano-confined chemical reactions bear great promise for a wide range of important applications in the near-to-medium term, e.g., within the emerging area of chemical storage of renewable energy. To explore this important trend, in the present work, resorcinol-/formaldehyde-based carbon aerogels were prepared by sol-gel polymerisation of resorcinol, with furfural catalysed by a sodium-carbonate solution using ambient-pressure drying. These aerogels were further carbonised in nitrogen to obtain their corresponding carbon aerogels. Through this study, the synthesis parameters were selected in a way to obtain minimum shrinkage during the drying step. The microstructure of the product was observed using Scanning Electron Microscopy (SEM) and Field Emission Scanning Electron Microscopy (FESEM) imaging techniques. The optimised carbon aerogels were found to have pore sizes of ~21 nm with a specific accessible surface area equal to 854.0 m2/g. Physical activation of the carbon aerogel with CO2 generates activated carbon aerogels with a surface area of 1756 m2/g and a total porosity volume up to 3.23 cm3/g. The product was then used as a scaffold for magnesium/cobalt-hydride formation. At first, cobalt nanoparticles were formed inside the scaffold, by reducing the confined cobalt oxide, then MgH2 was synthesised as the second required component in the scaffold, by infiltrating the solution of dibutyl magnesium (MgBu2) precursor, followed by a hydrogenation reaction. Further hydrogenation at higher temperature leads to the formation of Mg2CoH5. In situ synchrotron X-ray diffraction was employed to study the mechanism of hydride formation during the heating process. Full article
Show Figures

Graphical abstract

Back to TopTop