Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = lymphatic mimicry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 13255 KiB  
Article
Three-Dimensional Histological Characterization of the Placental Vasculature Using Light Sheet Microscopy
by Lennart Freise, Rose Yinghan Behncke, Hanna Helene Allerkamp, Tim Henrik Sandermann, Ngoc Hai Chu, Eva Maria Funk, Lukas Jonathan Hondrich, Alina Riedel, Christian Witzel, Nils Rouven Hansmeier, Magdalena Danyel, Alexandra Gellhaus, Ralf Dechend and René Hägerling
Biomolecules 2023, 13(6), 1009; https://doi.org/10.3390/biom13061009 - 17 Jun 2023
Cited by 2 | Viewed by 3403
Abstract
The placenta is the first embryonic organ, representing the connection between the embryo and the mother, and is therefore necessary for the embryo’s growth and survival. To meet the ever-growing need for nutrient and gas exchange, the maternal spiral arteries undergo extensive remodeling, [...] Read more.
The placenta is the first embryonic organ, representing the connection between the embryo and the mother, and is therefore necessary for the embryo’s growth and survival. To meet the ever-growing need for nutrient and gas exchange, the maternal spiral arteries undergo extensive remodeling, thus increasing the uteroplacental blood flow by 16-fold. However, the insufficient remodeling of the spiral arteries can lead to severe pregnancy-associated disorders, including but not limited to pre-eclampsia. Insufficient endovascular trophoblast invasion plays a key role in the manifestation of pre-eclampsia; however, the underlying processes are complex and still unknown. Classical histopathology is based on two-dimensional section microscopy, which lacks a volumetric representation of the vascular remodeling process. To further characterize the uteroplacental vascularization, a detailed, non-destructive, and subcellular visualization is beneficial. In this study, we use light sheet microscopy for optical sectioning, thus establishing a method to obtain a three-dimensional visualization of the vascular system in the placenta. By introducing a volumetric visualization method of the placenta, we could establish a powerful tool to deeply investigate the heterogeneity of the spiral arteries during the remodeling process, evaluate the state-of-the-art treatment options, effects on vascularization, and, ultimately, reveal new insights into the underlying pathology of pre-eclampsia. Full article
Show Figures

Figure 1

16 pages, 1078 KiB  
Review
Harnessing Immune Evasion Strategy of Lymphatic Filariae: A Therapeutic Approach against Inflammatory and Infective Pathology
by Priyanka Bhoj, Namdev Togre, Vishal Khatri and Kalyan Goswami
Vaccines 2022, 10(8), 1235; https://doi.org/10.3390/vaccines10081235 - 1 Aug 2022
Cited by 9 | Viewed by 5074
Abstract
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in [...] Read more.
Human lymphatic filariae have evolved numerous immune evasion strategies to secure their long-term survival in a host. These strategies include regulation of pattern recognition receptors, mimicry with host glycans and immune molecules, manipulation of innate and adaptive immune cells, induction of apoptosis in effector immune cells, and neutralization of free radicals. This creates an anti-inflammatory and immunoregulatory milieu in the host: a modified Th2 immune response. Therefore, targeting filarial immunomodulators and manipulating the filariae-driven immune system against the filariae can be a potential therapeutic and prophylactic strategy. Filariae-derived immunosuppression can also be exploited to treat other inflammatory diseases and immunopathologic states of parasitic diseases, such as cerebral malaria, and to prevent leishmaniasis. This paper reviews immunomodulatory mechanisms acquired by these filariae for their own survival and their potential application in the development of novel therapeutic approaches against parasitic and inflammatory diseases. Insight into the intricate network of host immune-parasite interactions would aid in the development of effective immune-therapeutic options for both infectious and immune-pathological diseases. Full article
Show Figures

Figure 1

18 pages, 2229 KiB  
Article
Organ Specific Copy Number Variations in Visceral Metastases of Human Melanoma
by Orsolya Papp, Viktória Doma, Jeovanis Gil, György Markó-Varga, Sarolta Kárpáti, József Tímár and Laura Vízkeleti
Cancers 2021, 13(23), 5984; https://doi.org/10.3390/cancers13235984 - 28 Nov 2021
Cited by 9 | Viewed by 3375
Abstract
Malignant melanoma is one of the most aggressive skin cancers with high potential of visceral dissemination. Since the information about melanoma genomics is mainly based on primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank was established. We used copy [...] Read more.
Malignant melanoma is one of the most aggressive skin cancers with high potential of visceral dissemination. Since the information about melanoma genomics is mainly based on primary tumors and lymphatic or skin metastases, an autopsy-based visceral metastasis biobank was established. We used copy number variation arrays (N = 38 samples) to reveal organ specific alterations. Results were partly completed by proteomic analysis. A significant increase of high-copy number gains was found in an organ-specific manner, whereas copy number losses were predominant in brain metastases, including the loss of numerous DNA damage response genes. Amplification of many immune genes was also observed, several of them are novel in melanoma, suggesting that their ectopic expression is possibly underestimated. This “immunogenic mimicry” was exclusive for lung metastasis. We also provided evidence for the possible autocrine activation of c-MET, especially in brain and lung metastases. Furthermore, frequent loss of 9p21 locus in brain metastases may predict higher metastatic potential to this organ. Finally, a significant correlation was observed between BRAF gene copy number and mutant allele frequency, mainly in lung metastases. All of these events may influence therapy efficacy in an organ specific manner, which knowledge may help in alleviating difficulties caused by resistance. Full article
(This article belongs to the Special Issue Metastatic Progression of Human Melanoma)
Show Figures

Figure 1

16 pages, 355 KiB  
Review
Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role?
by Cabirou Mounchili Shintouo, Robert Adamu Shey, Tony Mets, Luc Vanhamme, Jacob Souopgui, Stephen Mbigha Ghogomu and Rose Njemini
Trop. Med. Infect. Dis. 2021, 6(3), 153; https://doi.org/10.3390/tropicalmed6030153 - 19 Aug 2021
Cited by 5 | Viewed by 4207
Abstract
One of the most debilitating consequences of aging is the progressive decline in immune function, known as immunosenescence. This phenomenon is characterized by a shift in T-cell phenotypes, with a manifest decrease of naive T-cells—dealing with newly encountered antigens—and a concomitant accumulation of [...] Read more.
One of the most debilitating consequences of aging is the progressive decline in immune function, known as immunosenescence. This phenomenon is characterized by a shift in T-cell phenotypes, with a manifest decrease of naive T-cells—dealing with newly encountered antigens—and a concomitant accumulation of senescent and regulatory T-cells, leading to a greater risk of morbidity and mortality in older subjects. Additionally, with aging, several studies have unequivocally revealed an increase in the prevalence of onchocerciasis infection. Most lymphatic complications, skin and eye lesions due to onchocerciasis are more frequent among the elderly population. While the reasons for increased susceptibility to onchocerciasis with age are likely to be multi-factorial, age-associated immune dysfunction could play a key role in the onset and progression of the disease. On the other hand, there is a growing consensus that infection with onchocerciasis may evoke deleterious effects on the host’s immunity and exacerbate immune dysfunction. Indeed, Onchocerca volvulus has been reported to counteract the immune responses of the host through molecular mimicry by impairing T-cell activation and interfering with the processing of antigens. Moreover, reports indicate impaired cellular and humoral immune responses even to non-parasite antigens in onchocerciasis patients. This diminished protective response may intensify the immunosenescence outcomes, with a consequent vulnerability of those affected to additional diseases. Taken together, this review is aimed at contributing to a better understanding of the immunological and potential pathological mechanisms of onchocerciasis in the older population. Full article
(This article belongs to the Special Issue Viral-Host Metabolic Interactions)
22 pages, 1980 KiB  
Review
Aneuploid Circulating Tumor-Derived Endothelial Cell (CTEC): A Novel Versatile Player in Tumor Neovascularization and Cancer Metastasis
by Peter Ping Lin
Cells 2020, 9(6), 1539; https://doi.org/10.3390/cells9061539 - 24 Jun 2020
Cited by 53 | Viewed by 8529
Abstract
Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived [...] Read more.
Hematogenous and lymphogenous cancer metastases are significantly impacted by tumor neovascularization, which predominantly consists of blood vessel-relevant angiogenesis, vasculogenesis, vasculogenic mimicry, and lymphatic vessel-related lymphangiogenesis. Among the endothelial cells that make up the lining of tumor vasculature, a majority of them are tumor-derived endothelial cells (TECs), exhibiting cytogenetic abnormalities of aneuploid chromosomes. Aneuploid TECs are generated from “cancerization of stromal endothelial cells” and “endothelialization of carcinoma cells” in the hypoxic tumor microenvironment. Both processes crucially engage the hypoxia-triggered epithelial-to-mesenchymal transition (EMT) and endothelial-to-mesenchymal transition (EndoMT). Compared to the cancerization process, endothelialization of cancer cells, which comprises the fusion of tumor cells with endothelial cells and transdifferentiation of cancer cells into TECs, is the dominant pathway. Tumor-derived endothelial cells, possessing the dual properties of cancerous malignancy and endothelial vascularization ability, are thus the endothelialized cancer cells. Circulating tumor-derived endothelial cells (CTECs) are TECs shed into the peripheral circulation. Aneuploid CD31+ CTECs, together with their counterpart CD31- circulating tumor cells (CTCs), constitute a unique pair of cellular circulating tumor biomarkers. This review discusses a proposed cascaded framework that focuses on the origins of TECs and CTECs in the hypoxic tumor microenvironment and their clinical implications for tumorigenesis, neovascularization, disease progression, and cancer metastasis. Aneuploid CTECs, harboring hybridized properties of malignancy, vascularization and motility, may serve as a unique target for developing a novel metastasis blockade cancer therapy. Full article
Show Figures

Figure 1

Back to TopTop