Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role?
Abstract
:1. Introduction
2. Immunological Features of Ageing
Immunosenescence, Inflammaging, and Immune-Risk Profile in the Elderly
3. Immunological Responsiveness to Onchocerciasis
4. Immunological Markers of Onchocerciasis
5. Clinical Spectrum of Onchocerciasis and Ageing
5.1. Onchocerciasis and Susceptibility of Older Persons to Diseases
5.2. Lymphatic Complications Due to Onchocerciasis in the Elderly Population
5.3. Onchocercal Skin Lesions among the Elderly Population
5.4. Visual Impairment and Blindness
6. Concluding Remarks and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kanasi, E.; Ayilavarapu, S.; Jones, J. The aging population: Demographics and the biology of aging. Periodontol. 2000 2016, 72, 13–18. [Google Scholar] [CrossRef]
- World Health Organisation. Global Health and Aging. National Institutes of Health, Bethesda, USA. Available online: https://www.who.int/ageing/publications/global_health/en/ (accessed on 14 May 2021).
- Tramujas Vasconcellos Neumann, L.; Albert, S.M. Aging in Brazil. Gerontologist 2018, 58, 611–617. [Google Scholar] [CrossRef] [PubMed]
- Gazzinelli-Guimaraes, P.H.; Nutman, T.B. Helminth parasites and immune regulation. F1000Research 2018, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shintouo, C.M.; Nguve, J.E.; Asa, F.B.; Shey, R.A.; Kamga, J.; Souopgui, J.; Ghogomu, S.M.; Njemini, R. Entomological assessment of onchocerca species transmission by black flies in selected communities in the west region of Cameroon. Pathogens 2020, 9, 722. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Key, H.; Soboslay, P.T. Reproductive biology and population dynamics of Onchocerca volvulus in the vertebrate host. Parasite 1994, 1, S53–S55. [Google Scholar] [CrossRef] [Green Version]
- Hoerauf, A.; Brattig, N. Resistance and susceptibility in human onchocerciasis—Beyond Th1 vs. Th2. Trends Parasitol. 2002, 18, 25–31. [Google Scholar] [CrossRef]
- World Health Organisation. Onchocerciasis key facts. Available online: https://www.who.int/news-room/fact-sheets/detail/onchocerciasis (accessed on 16 May 2021).
- Schulz-Key, H.; Soboslay, P.T.; Hoffmann, W.H. Ivermectin-facilitated immunity. Parasitol. Today 1992, 8, 152–153. [Google Scholar] [CrossRef]
- Soboslay, P.T.; Dreweck, C.M.; Hoffmann, W.H.; Lüder, C.G.; Heuschkel, C.; Görgen, H.; Banla, M.; Schulz-Key, H. Ivermectin-facilitated immunity in onchocerciasis. Reversal of lymphocytopenia, cellular anergy and deficient cytokine production after single treatment. Clin. Exp. Immunol. 1992, 89, 407–413. [Google Scholar] [CrossRef]
- Bakajika, D.; Senyonjo, L.; Enyong, P.; Oye, J.; Biholong, B.; Elhassan, E.; Boakye, D.; Dixon, R.; Schmidt, E. On-going transmission of human onchocerciasis in the Massangam health district in the West Region of Cameroon: Better understanding transmission dynamics to inform changes in programmatic interventions. PLoS Negl. Trop. Dis. 2018, 12, e0006904. [Google Scholar] [CrossRef]
- Anosike, J.C.; Onwuliri, O.E.; Onwuliri, V.A. The prevalence, intensity and clinical manifestations of Onchocerca volvulus infection in Toro local government area of Bauchi State, Nigeria. Int. J. Hyg. Environ. Health 2001, 203, 459–464. [Google Scholar] [CrossRef]
- Dana, D.; Debalke, S.; Mekonnen, Z.; Kassahun, W.; Suleman, S.; Getahun, K.; Yewhalaw, D. A community-based cross-sectional study of the epidemiology of onchocerciasis in unmapped villages for community directed treatment with ivermectin in Jimma Zone, southwestern Ethiopia. BMC Public Health 2015, 15, 595. [Google Scholar] [CrossRef] [Green Version]
- Dori, G.U.; Belay, T.; Belete, H.; Panicker, K.N.; Hailu, A. Parasitological and clinico-epidemiological features of onchocerciasis in West Wellega, Ethiopia. J. Parasit. Dis. 2012, 36, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dozie, I.; Onwuliri, C.; Nwoke, B. Onchocerciasis in Imo state, Nigeria (2): The prevalence, intensity and distribution in the upper Imo river basin. Int. J. Environ. Health Res. 2004, 14, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Little, M.P.; Breitling, L.P.; Basáñez, M.G.; Alley, E.S.; Boatin, B.A. Association between microfilarial load and excess mortality in onchocerciasis: An epidemiological study. Lancet 2004, 363, 1514–1521. [Google Scholar] [CrossRef]
- Tielsch, J.M.; Beeche, A. Impact of ivermectin on illness and disability associated with onchocerciasis. Trop. Med. Int. Health 2004, 9, A45–A56. [Google Scholar] [CrossRef]
- Castle, S.C. Clinical relevance of age-related immune dysfunction. Clinical Infect. Dis. 2000, 31, 578–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Liu, Y.; Wang, J.; Zhao, Y.; Li, K.; Jing, Y.; Zhang, X.; Liu, Q.; Geng, X.; Li, G.; et al. Long-term persistent organic pollutants exposure induced telomere dysfunction and senescence-associated secretary phenotype. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2018, 73, 1027–1035. [Google Scholar] [CrossRef] [Green Version]
- Saule, P.; Trauet, J.; Dutriez, V.; Lekeux, V.; Dessaint, J.P.; Labalette, M. Accumulation of memory T cells from childhood to old age: Central and effector memory cells in CD4(+) versus effector memory and terminally differentiated memory cells in CD8(+) compartment. Mech. Ageing Dev. 2006, 127, 274–281. [Google Scholar] [CrossRef]
- Palmer, D.B. The effect of age on thymic function. Front. Immunol. 2013, 4, 316. [Google Scholar] [CrossRef] [Green Version]
- Hale, J.S.; Boursalian, T.E.; Turk, G.L.; Fink, P.J. Thymic output in aged mice. Proc. Natl. Acad. Sci. USA 2006, 103, 8447–8452. [Google Scholar] [CrossRef] [Green Version]
- Rezzani, R.; Nardo, L.; Favero, G.; Peroni, M.; Rodella, L.F. Thymus and aging: Morphological, radiological, and functional overview. AGE 2014, 36, 313–351. [Google Scholar] [CrossRef] [Green Version]
- Fagnoni, F.F.; Vescovini, R.; Passeri, G.; Bologna, G.; Pedrazzoni, M.; Lavagetto, G.; Casti, A.; Franceschi, C.; Passeri, M.; Sansoni, P. Shortage of circulating naive CD8+ T cells provides new insights on immunodeficiency in aging. Blood 2000, 95, 2860–2868. [Google Scholar] [CrossRef]
- Pera, A.; Campos, C.; López, N.; Hassouneh, F.; Alonso, C.; Tarazona, R.; Solana, R. Immunosenescence: Implications for response to infection and vaccination in older people. Maturitas 2015, 82, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Crooke, S.N.; Ovsyannikova, I.G.; Poland, G.A.; Kennedy, R.B. Immunosenescence and human vaccine immune responses. Immun. Ageing 2019, 16, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goronzy, J.J.; Weyand, C.M. Understanding immunosenescence to improve responses to vaccines. Nat. Immunol. 2013, 14, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ian, D.G. The effect of aging on susceptibility to infection. Rev. Infect. Dis. 1980, 2, 801–810. [Google Scholar]
- Esme, M.; Topeli, A.; Yavuz, B.B.; Akova, M. Infections in the elderly critically-Ill patients. Front. Med. 2019, 6, 118. [Google Scholar] [CrossRef] [Green Version]
- Del Giudice, G.; Goronzy, J.J.; Grubeck-Loebenstein, B.; Lambert, P.-H.; Mrkvan, T.; Stoddard, J.J.; Doherty, T.M. Fighting against a protean enemy: Immunosenescence, vaccines, and healthy aging. NPJ Aging Mech. Dis. 2017, 4, 1. [Google Scholar] [CrossRef] [Green Version]
- Barbé-Tuana, F.; Funchal, G.; Schmitz, C.R.R.; Maurmann, R.M.; Bauer, M.E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 2020, 42, 545–557. [Google Scholar] [CrossRef]
- Freund, A.; Orjalo, A.V.; Desprez, P.Y.; Campisi, J. Inflammatory networks during cellular senescence: Causes and consequences. Trends Mol. Med. 2010, 16, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Van Deursen, J.M. The role of senescent cells in ageing. Nature 2014, 509, 439–446. [Google Scholar] [CrossRef] [Green Version]
- Davalos, A.R.; Coppe, J.P.; Campisi, J.; Desprez, P.Y. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010, 29, 273–283. [Google Scholar] [CrossRef] [Green Version]
- Mathur, S.K.; Schwantes, E.A.; Jarjour, N.N.; Busse, W.W. Age-related changes in eosinophil function in human subjects. Chest 2008, 133, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Gaya da Costa, M.; Poppelaars, F.; van Kooten, C.; Mollnes, T.E.; Tedesco, F.; Würzner, R.; Trouw, L.A.; Truedsson, L.; Daha, M.R.; Roos, A.; et al. Age and sex-associated changes of complement activity and complement levels in a healthy caucasian population. Front. Immunol. 2018, 9, 2664. [Google Scholar] [CrossRef]
- Fougère, B.; Boulanger, E.; Nourhashémi, F.; Guyonnet, S.; Cesari, M. Chronic inflammation: Accelerator of biological aging. J. Gerontol. Ser. A 2016, 72, 1218–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Campisi, J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2014, 69, S4–S9. [Google Scholar] [CrossRef] [PubMed]
- Wikby, A.; Ferguson, F.; Forsey, R.; Thompson, J.; Strindhall, J.; Löfgren, S.; Nilsson, B.-O.; Ernerudh, J.; Pawelec, G.; Johansson, B. An immune risk phenotype, cognitive impairment, and survival in very late life: Impact of allostatic load in Swedish octogenarian and nonagenarian humans. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 556–565. [Google Scholar] [CrossRef]
- Fulop, T.; Larbi, A.; Dupuis, G.; Le Page, A.; Frost, E.H.; Cohen, A.A.; Witkowski, J.M.; Franceschi, C. Immunosenescence and inflamm-aging as two sides of the same coin: Friends or foes? Front. Immunol. 2018, 8, 1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Licastro, F.; Candore, G.; Lio, D.; Porcellini, E.; Colonna-Romano, G.; Franceschi, C.; Caruso, C. Innate immunity and inflammation in ageing: A key for understanding age-related diseases. Immun. Ageing 2005, 2, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; de Luca, M.; Ottaviani, E.; de Benedictis, G. Inflamm-aging—An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci. 2000, 908, 244–254. [Google Scholar] [CrossRef]
- Fulop, T.; Witkowski, J.M.; Olivieri, F.; Larbi, A. The integration of inflammaging in age-related diseases. Semin. Immunol. 2018, 40, 17–35. [Google Scholar] [CrossRef]
- Ferrucci, L.; Fabbri, E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018, 15, 505–522. [Google Scholar] [CrossRef]
- Giunta, B.; Fernandez, F.; Nikolic, W.V.; Obregon, D.; Rrapo, E.; Town, T.; Tan, J. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflamm. 2008, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Boren, E.; Gershwin, M.E. Inflamm-aging: Autoimmunity, and the immune-risk phenotype. Autoimmun. Rev. 2004, 3, 401–406. [Google Scholar] [CrossRef]
- Franceschi, C.; Valensin, S.; Lescai, F.; Olivieri, F.; Licastro, F.; Grimaldi, L.M.; Monti, D.; de Benedictis, G.; Bonafè, M. Neuroinflammation and the genetics of Alzheimer’s disease: The search for a pro-inflammatory phenotype. Aging 2001, 13, 163–170. [Google Scholar] [CrossRef]
- Lencel, P.; Magne, D. Inflammaging: The driving force in osteoporosis? Med. Hypotheses 2011, 76, 317–321. [Google Scholar] [CrossRef] [PubMed]
- Ostan, R.; Lanzarini, C.; Pini, E.; Scurti, M.; Vianello, D.; Bertarelli, C.; Fabbri, C.; Izzi, M.; Palmas, G.; Biondi, F.; et al. Inflammaging and cancer: A challenge for the Mediterranean diet. Nutrients 2015, 7, 2589. [Google Scholar] [CrossRef] [Green Version]
- Biragyn, A.; Ferrucci, L. Gut dysbiosis: A potential link between increased cancer risk in ageing and inflammaging. Lancet Oncol. 2018, 19, e295–e304. [Google Scholar] [CrossRef]
- Strindhall, J.; Nilsson, B.O.; Löfgren, S.; Ernerudh, J.; Pawelec, G.; Johansson, B.; Wikby, A. No immune risk profile among individuals who reach 100 years of age: Findings from the Swedish NONA immune longitudinal study. Exp. Gerontol. 2007, 42, 753–761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simpson, R.J.; Bigley, A.B.; Spielmann, G.; LaVoy, E.C.; Kunz, H.; Bollard, C.M. Human cytomegalovirus infection and the immune response to exercise. Exerc. Immunol. Rev. 2016, 22, 8–27. [Google Scholar]
- Pawelec, G.; Koch, S.; Franceschi, C.; Wikby, A. Human immunosenescence: Does it have an infectious component? Ann. N. Y Acad. Sci. 2006, 1067, 56–65. [Google Scholar] [CrossRef]
- Khan, N.; Shariff, N.; Cobbold, M.; Bruton, R.; Ainsworth, J.A.; Sinclair, A.J.; Nayak, L.; Moss, P.A. Cytomegalovirus seropositivity drives the CD8 T cell repertoire toward greater clonality in healthy elderly individuals. J. Immunol. 2002, 169, 1984–1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Acuto, O.; Michel, F. CD28-mediated co-stimulation: A quantitative support for TCR signalling. Nat. Rev. Immunol. 2003, 3, 939–951. [Google Scholar] [CrossRef]
- Effros, R.B.; Cai, Z.; Linton, P.J. CD8 T cells and aging. Crit. Rev. Immunol. 2003, 23, 45–64. [Google Scholar] [CrossRef]
- Fülöp, T.; Larbi, A.; Pawelec, G. Human T cell aging and the impact of persistent viral infections. Front. Immunol. 2013, 4, 271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusunoki, Y.; Yamaoka, M.; Kubo, Y.; Hayashi, T.; Kasagi, F.; Douple, E.B.; Nakachi, K. T-cell immunosenescence and inflammatory response in atomic bomb survivors. Radiat. Res. 2010, 174, 870–876. [Google Scholar] [CrossRef]
- Lange, A.M.; Yutanawiboonchai, W.; Scott, P.; Abraham, D. IL-4- and IL-5-dependent protective immunity to Onchocerca volvulus infective larvae in BALB/cBYJ mice. J. Immunol. 1994, 153, 205–211. [Google Scholar] [PubMed]
- Abraham, D.; Leon, O.; Schnyder-Candrian, S.; Wang, C.C.; Galioto, A.M.; Kerepesi, L.A.; Lee, J.J.; Lustigman, S. Immunoglobulin E and eosinophil-dependent protective immunity to larval Onchocerca volvulus in mice immunized with irradiated larvae. Infect. Immun. 2004, 72, 810–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brattig, N.W.; Henkle-Dührsen, K.; Hounkpatin, S.; Liebau, E.; Kruppa, T.F.; Zipfel, P.F. Characterization of human immune responses to the cytosolic superoxide dismutase and glutathione S-transferase from Onchocerca volvulus. Trop. Med. Int. Health 1997, 2, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Brattig, N.W.; Tischendorf, F.W.; Strote, G.; Medina-de la Garza, C.E. Eosinophil-larval-interaction in onchocerciasis: Heterogeneity of in vitro adherence of eosinophils to infective third and fourth stage larvae and microfilariae of Onchocerca volvulus. Parasite Immunol. 1991, 13, 13–22. [Google Scholar] [CrossRef] [PubMed]
- Ngu, J.L.; Tume, C.; Lando, G.; Ndumbe, P.; Leke, R.G.; Titanji, V.; Asonganyi, T. Comparative studies of clinical groups of patients in an onchocerciasis endemic area for evidence of immune-mediated protection. Trop. Med. Parasitol. 1989, 40, 460–463. [Google Scholar]
- Dafa’alla, T.H.; Ghalib, H.W.; Abdelmageed, A.; Williams, J.F. The profile of IgG and IgG subclasses of onchocerciasis patients. Clin. Exp. Immunol. 1992, 88, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Boyer, A.E.; Tsang, V.C.; Eberhard, M.L.; Zea-Flores, G.; Hightower, A.; Pilcher, J.B.; Zea-Flores, R.; Zhou, W.; Reimer, C.B. Guatemalan human onchocerciasis. II. Evidence for IgG3 involvement in acquired immunity to Onchocerca volvulus and identification of possible immune-associated antigens. J. Immunol. 1991, 146, 4001. [Google Scholar] [PubMed]
- MacDonald, A.J.; Turaga, P.S.D.; Harmon-Brown, C.; Tierney, T.J.; Bennett, K.E.; McCarthy, M.C.; Simonek, S.C.; Enyong, P.A.; Moukatte, D.W.; Lustigman, S. Differential cytokine and antibody responses to adult and larval stages of Onchocerca volvulus consistent with the development of concomitant immunity. Infect. Immun. 2002, 70, 2796–2804. [Google Scholar] [CrossRef] [Green Version]
- Greene, B.M.; Taylor, H.R.; Aikawa, M. Cellular killing of microfilariae of Onchocerca volvulus: Eosinophil and neutrophil-mediated immune serum-dependent destruction. J. Immunol. 1981, 127, 1611–1618. [Google Scholar]
- Meri, T.; Jokiranta, T.S.; Hellwage, J.; Bialonski, A.; Zipfel, P.F.; Meri, S. Onchocerca volvulus microfilariae avoid complement attack by direct binding of factor H. J. Infect. Dis. 2002, 185, 1786–1793. [Google Scholar] [CrossRef] [Green Version]
- Akuffo, H.; Maasho, K.; Lavebratt, C.; Engström, K.; Britton, S. Ivermectin-induced immunopotentiation in onchocerciasis: Recognition of selected antigens following a single dose of ivermectin. Clin. Exp. Immunol. 1996, 103, 244–252. [Google Scholar] [CrossRef]
- McKechnie, N.M.; Gürr, W.; Yamada, H.; Copland, D.; Braun, G. Antigenic mimicry: Onchocerca volvulus antigen-specific T cells and ocular inflammation. Invest. Ophthalmol. Vis. Sci. 2002, 43, 411–418. [Google Scholar]
- Meilof, J.F.; van der Lelij, A.; Rokeach, L.A.; Hoch, S.O.; Smeenk, R.J. Autoimmunity and filariasis. Autoantibodies against cytoplasmic cellular proteins in sera of patients with onchocerciasis. J. Immunol. 1993, 151, 5800. [Google Scholar] [PubMed]
- Gallin, M.; Edmonds, K.; Ellner, J.J.; Erttmann, K.D.; White, A.T.; Newland, H.S.; Taylor, H.R.; Greene, B.M. Cell-mediated immune responses in human infection with Onchocerca volvulus. J. Immunol. 1988, 140, 1999. [Google Scholar] [PubMed]
- Schönemeyer, A.; Lucius, R.; Sonnenburg, B.; Brattig, N.; Sabat, R.; Schilling, K.; Bradley, J.; Hartmann, S. Modulation of human T cell responses and macrophage functions by onchocystatin, a secreted protein of the filarial nematode—Onchocerca volvulus. J. Immunol. 2001, 167, 3207. [Google Scholar] [CrossRef] [Green Version]
- Satoguina, J.; Mempel, M.; Larbi, J.; Badusche, M.; Löliger, C.; Adjei, O.; Gachelin, G.; Fleischer, B.; Hoerauf, A. Antigen-specific T regulatory-1 cells are associated with immunosuppression in a chronic helminth infection (onchocerciasis). Microbes Infect. 2002, 4, 1291–1300. [Google Scholar] [CrossRef]
- Steel, C.; Nutman, T.B. CTLA-4 in filarial infections: Implications for a role in diminished T cell reactivity. J. Immunol. 2003, 170, 1930. [Google Scholar] [CrossRef] [PubMed]
- Lüder, C.G.; Schulz-Key, H.; Banla, M.; Pritze, S.; Soboslay, P.T. Immunoregulation in onchocerciasis: Predominance of Th1-type responsiveness to low molecular weight antigens of Onchocerca volvulus in exposed individuals without microfilaridermia and clinical disease. Clin. Exp. Immunol. 1996, 105, 245–253. [Google Scholar] [CrossRef]
- Soboslay, P.T.; Lüder, C.G.; Riesch, S.; Geiger, S.M.; Banla, M.; Batchassi, E.; Stadler, A.; Schulz-Key, H. Regulatory effects of Th1-type (IFN-gamma, IL-12) and Th2-type cytokines (IL-10, IL-13) on parasite-specific cellular responsiveness in Onchocerca volvulus-infected humans and exposed endemic controls. Immunology 1999, 97, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Katawa, G.; Layland, L.E.; Debrah, A.; Von Horn, C.; Batsa, L.; Kwarteng, A.; Arriens, S.; Taylor, D.W.; Specht, S.; Hoerauf, A.; et al. Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells. PLoS Negl. Trop. Dis. 2015, 9, e3414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soboslay, P.T.; Geiger, S.M.; Weiss, N.; Banla, M.; Lüder, C.G.; Dreweck, C.M.; Batchassi, E.; Boatin, B.A.; Stadler, A.; Schulz-Key, H. The diverse expression of immunity in humans at distinct states of Onchocerca volvulus infection. Immunology 1997, 90, 592–599. [Google Scholar] [CrossRef] [PubMed]
- Elson, L.H.; Calvopiña, M.; Paredes, W.; Araujo, E.; Bradley, J.E.; Guderian, R.H.; Nutman, T.B. Immunity to onchocerciasis: Putative immune persons produce a Th1-like response to Onchocerca volvulus. J. Infect. Dis. 1995, 171, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Schulz-Key, H. Observations on the reproductive biology of Onchocerca volvulus. Acta Leiden 1990, 59, 27–44. [Google Scholar] [PubMed]
- Mackenzie, C.D.; Williams, J.F.; Sisley, B.M.; Steward, M.W.; O’Day, J. Variations in host responses and the pathogenesis of human onchocerciasis. Rev. Infect. Dis. 1985, 7, 802–808. [Google Scholar] [CrossRef]
- Taylor, M.J.; Hoerauf, A.; Bockarie, M. Lymphatic filariasis and onchocerciasis. Lancet 2010, 376, 1175–1185. [Google Scholar] [CrossRef]
- Chung, H.Y.; Kim, D.H.; Lee, E.K.; Chung, K.W.; Chung, S.; Lee, B.; Seo, A.Y.; Chung, J.H.; Jung, Y.S.; Im, E.; et al. Redefining chronic inflammation in aging and age-related diseases: Proposal of the senoinflammation concept. Aging Dis. 2019, 10, 367–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brüünsgaard, H.; Pedersen, B.K. Age-related inflammatory cytokines and disease. Immunol. Allergy Clin. N. Am. 2003, 23, 15–39. [Google Scholar] [CrossRef]
- Cooper, P.J.; Espinel, I.; Paredes, W.; Guderian, R.H.; Nutman, T.B. Impaired tetanus-specific cellular and humoral responses following tetanus vaccination in human onchocerciasis: A possible role for interleukin-10. J. Infect. Dis. 1998, 178, 1133–1138. [Google Scholar] [CrossRef] [Green Version]
- Kilian, H.D.; Nielsen, G. Cell-mediated and humoral immune response to tetanus vaccinations in onchocerciasis patients. Trop. Med. Parasitol. 1989, 40, 285–291. [Google Scholar] [PubMed]
- Prost, A.; Schlumberger, M.; Fayet, M.T. Response to tetanus immunization in onchocerciasis patients. Ann. Trop. Med. Parasitol. 1983, 77, 83–85. [Google Scholar] [CrossRef]
- Kilian, H.D.; Nielsen, G. Cell-mediated and humoral immune responses to BCG and rubella vaccinations and to recall antigens in onchocerciasis patients. Trop. Med. Parasitol. 1989, 40, 445–453. [Google Scholar]
- Bennuru, S.; Oduro-Boateng, G.; Osigwe, C.; Del-Valle, P.; Golden, A.; Ogawa, G.M.; Cama, V.; Lustigman, S.; Nutman, T.B. Integrating multiple biomarkers to increase sensitivity for the detection of Onchocerca volvulus infection. J. Infect. Dis. 2019, 221, 1805–1815. [Google Scholar] [CrossRef] [Green Version]
- Vlaminck, J.; Fischer, P.U.; Weil, G.J. Diagnostic tools for onchocerciasis elimination programs. Trends Parasitol. 2015, 31, 571–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagatie, O.; van Dorst, B.; Stuyver, L.J. Identification of three immunodominant motifs with atypical isotype profile scattered over the Onchocerca volvulus proteome. PLoS Negl. Trop. Dis. 2017, 11, e0005330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gbakima, A.A.; Nutman, T.B.; Bradley, J.E.; McReynolds, L.A.; Winget, M.D.; Hong, Y.; Scott, A.L. Immunoglobulin G subclass responses of children during infection with Onchocerca volvulus. Clin. Diagn. Lab. Immunol. 1996, 3, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Lucius, R.; Kern, A.; Seeber, F.; Pogonka, T.; Willenbucher, J.; Taylor, H.R.; Pinder, M.; Ghalib, H.W.; Schulz-Key, H.; Soboslay, P. Specific and sensitive IgG4 immunodiagnosis of onchocerciasis with a recombinant 33 kD Onchocerca volvulus protein (Ov33). Trop. Med. Parasitol. 1992, 43, 139–145. [Google Scholar] [PubMed]
- Kamalu, N.A.; Uwakwe, F.E. Evaluation of different onchocerciass manifestation by age and gender among residents in selected endemic villages in Okigwe Local Government Area of Imo State, Nigeria. Int. Lett. Nat. Sci. 2014, 20, 139–150. [Google Scholar] [CrossRef]
- Kamga, G.R.; Dissak-Delon, F.N.; Nana-Djeunga, H.C.; Biholong, B.D.; Mbigha-Ghogomu, S.; Souopgui, J.; Zoure, H.G.; Boussinesq, M.; Kamgno, J.; Robert, A. Still mesoendemic onchocerciasis in two Cameroonian community-directed treatment with ivermectin projects despite more than 15 years of mass treatment. Parasit Vectors 2016, 9, 581. [Google Scholar] [CrossRef]
- Onekutu, A.; Ayom, F.I.; Iboyi, M.O. Prevalence and distribution of human onchocerciasis and dermatological features in kwande Local Government Area of Benue State, Nigeria. J. Adv. Med. Med. Res. 2018, 27, 1–10. [Google Scholar] [CrossRef]
- Opara, K.N.; Fagbemi, B.O. Population dynamics of Onchocerca volvulus microfilariae in human host after six years of drug control. J. Vector Borne Dis. 2008, 45, 29–37. [Google Scholar] [PubMed]
- Okoye, I.C.; Onwuliri, C.O.E. Epidemiology and psycho-social aspects of onchocercal skin diseases in northeastern Nigeria. Filaria J. 2007, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Murdoch, M.E.; Murdoch, I.E.; Evans, J.; Yahaya, H.; Njepuome, N.; Cousens, S.; Jones, B.R.; Abiose, A. Pre-control relationship of onchocercal skin disease with onchocercal infection in Guinea Savanna, Northern Nigeria. PLoS Negl. Trop. Dis. 2017, 11, e0005489. [Google Scholar] [CrossRef] [PubMed]
- Kifle, B.; Woldemichael, K.; Nigatu, M. Prevalence of onchocerciasis and associated factors among adults aged ≥ 15 years in Semen Bench District, Bench Maji Zone, Southwest Ethiopia: Community based cross-sectional study. Adv. Public Health 2019, 2019, 7276230. [Google Scholar] [CrossRef]
- Miller, C.; Kelsoe, G. Ig VH hypermutation is absent in the germinal centers of aged mice. J. Immunol. 1995, 155, 3377–3384. [Google Scholar]
- Nicoletti, C.; Yang, X.; Cerny, J. Repertoire diversity of antibody response to bacterial antigens in aged mice. III. Phosphorylcholine antibody from young and aged mice differ in structure and protective activity against infection with Streptococcus pneumoniae. J. Immunol. 1993, 150, 543–549. [Google Scholar]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in aging: Between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 2017, 15, 21. [Google Scholar] [CrossRef] [Green Version]
- Ponnappan, S.; Ponnappan, U. Aging and immune function: Molecular mechanisms to interventions. Antioxid. Redox Signal 2011, 14, 1551–1585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Busse, P.J. Innate and adaptive immunosenescence. Ann. Allergy Asthma Immunol. 2010, 104, 183–190, quiz 190–182, 210. [Google Scholar] [CrossRef] [PubMed]
- Stewart, G.R.; Boussinesq, M.; Coulson, T.; Elson, L.; Nutman, T.; Bradley, J.E. Onchocerciasis modulates the immune response to mycobacterial antigens. Clin. Exp. Immunol. 1999, 117, 517–523. [Google Scholar] [CrossRef] [PubMed]
- Prost, A. The burden of blindness in adult males in the savanna villages of West Africa exposed to onchocerciasis. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 525–527. [Google Scholar] [CrossRef]
- Gopinath, R.; Ostrowski, M.; Justement, S.J.; Fauci, A.S.; Nutman, T.B. Filarial infections increase susceptibility to human immunodeficiency virus infection in peripheral blood mononuclear cells in vitro. J. Infect. Dis. 2000, 182, 1804–1808. [Google Scholar] [CrossRef] [Green Version]
- Egbert, P.R.; Jacobson, D.W.; Fiadoyor, S.; Dadzie, P.; Ellingson, K.D. Onchocerciasis: A potential risk factor for glaucoma. Br. J. Ophthalmol. 2005, 89, 796–798. [Google Scholar] [CrossRef] [Green Version]
- Siewe Fodjo, J.N.; Mandro, M.; Mukendi, D.; Tepage, F.; Menon, S.; Nakato, S.; Nyisi, F.; Abhafule, G.; Wonya’rossi, D.; Anyolito, A.; et al. Onchocerciasis-associated epilepsy in the Democratic Republic of Congo: Clinical description and relationship with microfilarial density. PLoS Negl. Trop. Dis. 2019, 13, e0007300. [Google Scholar] [CrossRef] [Green Version]
- Galán-Puchades, M.T. Onchocerciasis-associated epilepsy. Lancet Infect. Dis. 2019, 19, 21–22. [Google Scholar] [CrossRef] [Green Version]
- Gibson, D.W.; Connor, D.H. Onchocercal lymphadenitis: Clinicopathologic study of 34 patients. Trans. R. Soc. Trop. Med. Hyg. 1978, 72, 137–154. [Google Scholar] [CrossRef]
- Okoro, N.; Nwali, U.; Oli, A.; Innocent, O.; Somadina, O.; Shedrack, E. The prevalence and distribution of human onchocerciasis in two senatorial districts in Ebonyi State, Nigeria. Am. J. Infect. Dis. Microbiol. 2014, 2, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Nelson, G.S. “Hanging groin” and hernia, complications of onchocerciasis. Trans. R. Soc. Trop. Med. Hyg. 1958, 52, 272–275. [Google Scholar] [CrossRef]
- Mbanefo, E.C.; Eneanya, C.I.; Nwaorgu, O.C.; Otiji, M.O.; Oguoma, V.M.; Ogolo, B.A. Onchocerciasis in Anambra State, Southeast Nigeria: Endemicity and clinical manifestations. Postgrad. Med. J. 2010, 86, 578–583. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Payton, A.; Abiose, A.; Thomson, W.; Panicker, V.K.; Dyer, P.A.; Jones, B.R.; Maizels, R.M.; Ollier, W.E.R. HLA-DQ alleles associate with cutaneous features of onchocerciasis. Hum. Immunol. 1997, 55, 46–52. [Google Scholar] [CrossRef]
- Ali, M.M.; Elghazali, G.; Montgomery, S.M.; Farouk, S.E.; Nasr, A.; Noori, S.I.; Shamad, M.M.; Fadlelseed, O.E.; Berzins, K. Fc gamma RIIa (CD32) polymorphism and onchocercal skin disease: Implications for the development of severe reactive onchodermatitis (ROD). Am. J. Trop. Med. Hyg. 2007, 77, 1074–1078. [Google Scholar] [CrossRef] [PubMed]
- Ovuga, E.B.; Okello, D.O.; Ogwal-Okeng, J.W.; Orwotho, N.; Opoka, R.O. Social and psychological aspects of onchocercal skin disease in Nebbi district, Uganda. East Afr. Med. J. 1995, 72, 449–453. [Google Scholar]
- Murdoch, M.E.; Asuzu, M.C.; Hagan, M.; Makunde, W.H.; Ngoumou, P.; Ogbuagu, K.F.; Okello, D.; Ozoh, G.; Remme, J. Onchocerciasis: The clinical and epidemiological burden of skin disease in Africa. Ann. Trop. Med. Parasitol. 2002, 96, 283–296. [Google Scholar] [CrossRef] [PubMed]
- Sufi, D.; Tukur, Z. Evaluation of Onchocerciasis: A decade of post treatment with ivermectin in Zainabi and Ririwai Doguwa local government area of Kano State. Adv. Entomol. 2015, 3, 53200. [Google Scholar] [CrossRef] [Green Version]
- Ramaiah, K.D.; Guyatt, H.; Ramu, K.; Vanamail, P.; Pani, S.P.; Das, P.K. Treatment costs and loss of work time to individuals with chronic lymphatic filariasis in rural communities in south India. Trop. Med. Int. Health 1999, 4, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Puente, S.; Ramirez-Olivencia, G.; Lago, M.; Subirats, M.; Perez-Blazquez, E.; Bru, F.; Garate, T.; Vicente, B.; Belhassen-Garcia, M.; Muro, A. Dermatological manifestations in onchocerciasis: A retrospective study of 400 imported cases. Enferm. Infect. Microbiol. Clin. 2018, 36, 633–639. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Furtado, J.M.; Silva, J.C.; Resnikoff, S.; Lansingh, V.C. River blindness: An old disease on the brink of elimination and control. J. Glob. Infect. Dis. 2011, 3, 151–155. [Google Scholar] [CrossRef]
- Patterson, K.D. Disease and medicine in African history: A bibliographical essay. Hist. Afr. 1974, 1, 141–148. [Google Scholar] [CrossRef]
- Pearlman, E.; Hall, L.R. Immune mechanisms in Onchocerca volvulus-mediated corneal disease (river blindness). Parasite Immunol. 2000, 22, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, E.; Lass, J.H.; Bardenstein, D.S.; Diaconu, E.; Hazlett, F.E., Jr.; Albright, J.; Higgins, A.W.; Kazura, J.W. Onchocerca volvulus-mediated keratitis: Cytokine production by IL-4-deficient mice. Exp. Parasitol. 1996, 84, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, E.; Lass, J.H.; Bardenstein, D.S.; Kopf, M.; Hazlett, F.E., Jr.; Diaconu, E.; Kazura, J.W. Interleukin 4 and T helper type 2 cells are required for development of experimental onchocercal keratitis (river blindness). J. Exp. Med. 1995, 182, 931–940. [Google Scholar] [CrossRef] [PubMed]
- Chakravarti, B.; Lagoo-Deenadayalan, S.; Parker, J.S.; Whitfield, D.R.; Lagoo, A.; Chakravarti, D.N. In vivo molecular analysis of cytokines in a murine model of ocular onchocerciasis. I. Up-regulation of IL-4 and IL-5 mRNAs and not IL-2 and IFN gamma mRNAs in the cornea due to experimental interstitial keratitis. Immunol. Lett. 1996, 54, 59–64. [Google Scholar] [CrossRef]
- Kirkwood, B.; Smith, P.; Marshall, T.; Prost, A. Relationships between mortality, visual acuity and microfilarial load in the area of the Onchocerciasis Control Programme. Trans. R. Soc. Trop. Med. Hyg. 1983, 77, 862–868. [Google Scholar] [CrossRef]
- Akogun, O.B. Eye lesions, blindness and visual impairment in the Taraba river valley, Nigeria and their relation to onchocercal microfilariae in skin. Acta Trop. 1992, 51, 143–149. [Google Scholar] [CrossRef]
- Köberlein, J.; Beifus, K.; Schaffert, C.; Finger, R.P. The economic burden of visual impairment and blindness: A systematic review. BMJ Open 2013, 3, e003471. [Google Scholar] [CrossRef]
- Dyson, L.; Stolk, W.A.; Farrell, S.H.; Hollingsworth, T.D. Measuring and modelling the effects of systematic non-adherence to mass drug administration. Epidemics 2017, 18, 56–66. [Google Scholar] [CrossRef]
- Yirga, D.; Deribe, K.; Woldemichael, K.; Wondafrash, M.; Kassahun, W. Factors associated with compliance with community directed treatment with ivermectin for onchocerciasis control in Southwestern Ethiopia. Parasites Vectors 2010, 3, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fobi, G.; Yameogo, L.; Noma, M.; Aholou, Y.; Koroma, J.B.; Zouré, H.M.; Ukety, T.; Lusamba-Dikassa, P.-S.; Mwikisa, C.; Boakye, D.A.; et al. Managing the fight against onchocerciasis in Africa: APOC experience. PLoS Negl. Trop. Dis. 2015, 9, e0003542. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, E.C.; Huss, R.; Hopkins, A.; Dadjim, B.; Madjitoloum, P.; Hénault, C.; Klauss, V. Blindness and visual impairment in a region endemic for onchocerciasis in the Central African Republic. Br. J. Ophthalmol. 1997, 81, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Wang, W.; Su, D.-M. Contributions of age-related thymic involution to immunosenescence and inflammaging. Immun. Ageing 2020, 17, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Total Number of Infected Participants | Number of Elderly Individuals Infected (%) | Age Range of Elderly Individuals | Remark per the Other Age Groups | Geographical Distribution | Authors |
---|---|---|---|---|---|
188 | 100 (53.2) | ≥50 | Most infected group | Nigeria | Anosike et al. [12] |
99 | 40 (40.4) | ≥55 | Most infected group | Ethiopia | Dana et al. [13] |
833 | 135 (16.2) | ≥55 | Overall increase with age | Ethiopia | Dori et al. [14] |
889 | 363 (53.9) | ≥50 | Most infected group | Nigeria | Dozie et al. [15] |
170 | 39 (22.9) | ≥56 | Most infected group | Nigeria | Kamalu and Uwakwe [95] |
305 | 95 (31.1) | ≥50 | Most infected group | Cameroon | Kamga et al. [96] |
122 | 53 (43.4) | ≥50 | Most infected group | Nigeria | Onekutu et al. [97] |
398 | 145 (36.4) | >50 | Most infected group | Nigeria | Opara and Fagbemi [98] |
281 | 53 (18.9) | ≥51 | Overall increase with age | Nigeria | Okoye et al. [99] |
3257 | 351 (10.8) | ≥55 | Most infected group | Nigeria | Murdoch et al. [100] |
Category | Number of Participants Affected | Number of Elderly Individuals Infected (%) | Age Range of Elderly Individuals | Remark per the Other Age Groups | Authors |
---|---|---|---|---|---|
Hernia | 2 | 2 (100.0) | ≥50 | Only group affected | Anosike et al. [12] |
88 | 27 (30.7) | ≥50 | Most affected group | Dozie et al. [15] | |
Hanging groin | 41 | 29 (70.7) | ≥50 | Most affected group | Dozie et al. [15] |
13 | 7 (53.8) | ≥56 | Most affected group | Kamalu and Uwakwe [95] | |
95 | 43 (45.3) | ≥55 | Most affected group | Murdoch et al. [100] | |
1 | 1 (100.0) | ≥50 | Most affected group | Okoro et al. [114] | |
Lymphadenopathy | 73 | 28 (38.4) | ≥50 | Most affected group | Dozie et al. [15] |
6 | 5 (83.3) | ≥50 | Most affected group | Mbanefo et al. [116] | |
Lymphoedema | 58 | 44 (75.9) | ≥50 | Most affected group | Dozie et al. [15] |
Scrotal elephantiasis | 18 | 15 (83.3) | ≥50 | Most affected group | Anosike et al. [12] |
Category | Number of Participants Affected | Number of Elderly Individuals Infected (%) | Age Range of Elderly Individuals | Remark per the Other Age Groups | Authors |
---|---|---|---|---|---|
Skin depigmentation | 71 | 50 (70.4) | ≥50 | Most affected group | Anosike et al. [12] |
357 | 201 (56.3) | ≥50 | Most affected group | Dozie et al. [15] | |
525 | 109 (20.8) | ≥51 | Most affected group | Okoye et al. [99] | |
261 | 91 (34.9) | ≥55 | Most affected group | Murdoch et al. [100] | |
Lichenified onchodermatitis | 73 | 38 (52.1) | ≥50 | Most affected group | Dozie et al. [15] |
410 | 100 (24.4) | ≥51 | Most affected group | Okoye et al. [99] | |
Leopard skin | 11 | 9 (81.8) | ≥50 | Most affected group | Anosike et al. [12] |
90 | 23 (25.6) | ≥56 | Most affected group | Kamalu and Uwakwe [95] | |
24 | 8 (33.3) | ≥50 | Most affected group | Okoro et al. [114] | |
2 | 2 (100) | ≥50 | Only group affected | Sufi and Zainab [121] | |
Lizard skin | 8 | 7 (87.5) | ≥50 | Most affected group | Anosike et al. [12] |
68 | 22 (32.4) | ≥56 | Most affected group | Kamalu and Uwakwe [95] | |
Atrophy | 40 | 30 (75.0) | ≥50 | Most affected group | Anosike et al. [12] |
104 | 35 (33.7) | ≥50 | Most affected group | Dozie et al. [15] | |
184 | 45 (24.5) | ≥51 | Most affected group | Okoye et al. [99] | |
Nodule | 11 | 6 (54.5) | ≥50 | Most affected group | Anosike et al. [12] |
675 | 178 (26.4) | ≥50 | Most affected group | Dozie et al. [15] | |
70 | 21 (30.0) | ≥56 | Most affected group | Kamalu and Uwakwe [95] | |
127 | 47 (37.0) | ≥50 | Most affected group | Kamga et al. [96] | |
6 | 3 (50.0) | ≥50 | Most affected group | Okoro et al. [114] | |
86 | 35 (40.6) | ≥50 | Most affected group | Mbanefo et al. [116] | |
5 | 4 (80) | ≥50 | Most affected group | Sufi and Zainab [121] | |
Onchocercal skin disease | 293 | 54 (18.4) | ≥55 | Most affected group | Dori et al. [14] |
Pruritus | 49 | 9 (18.4) | ≥50 | Least affected group | Anosike et al. [12] |
574 | 50 (8.7) | ≥50 | Least affected group | Dozie et al. [15] | |
645 | 28 (4.3) | ≥55 | Least affected group | Murdoch et al. [100] | |
105 | 35 (33.3) | ≥50 | Most affected group | Mbanefo et al. [116] | |
Chronic papular onchodermatitis | 349 | 84 (24.1) | ≥50 | Third most affected group | Dozie et al. [15] |
1034 | 187 (18.1) | ≥51 | Fourth most affected group | Okoye et al. [99] | |
155 | 33 (22.3) | ≥55 | Most affected group | Murdoch et al. [100] | |
Acute papular onchodermatitis | 273 | 29 (10.6) | ≥50 | Fourth most affected group | Dozie et al. [15] |
576 | 37 (6.4) | ≥51 | Least affected group | Okoye et al. [99] | |
233 | 18 (7.7) | ≥55 | Third most affected group | Murdoch et al. [100] | |
76 | 11 (14.5) | ≥50 | Fourth most affected group | Mbanefo et al. [116] |
Category | Number of Participants Affected | Number of Elderly Individuals Infected (%) | Age Range of Elderly Individuals | Remark per the Other Age Groups | Authors |
---|---|---|---|---|---|
Ocular lesions | 16 | 13 (81.3) | ≥50 | Most affected group | Anosike et al. [12] |
506 | 268 (53.0) | ≥50 | Most affected group | Kirkwood et al. [130] | |
Eye itching | 14 | 5 (35.7) | ≥50 | Most affected group | Anosike et al. [12] |
297 | 80 (26.9) | ≥50 | Second most affected group | Dozie et al. [15] | |
Impaired vision | 1009 | 452 (44.8) | ≥50 | Most affected group | Dozie et al. [15] |
76 | 22 (28.9) | ≥56 | Most affected group | Kamalu and Uwakwe [95] | |
77 | 14 (18.2) | ≥50 | Fourth most affected group | Okoro et al. [114] | |
23 | 19 (82.6) | ≥50 | Most affected group | Mbanefo et al. [116] | |
462 | 76 (16.5) | ≥50 | Second most affected group | Akogun [131] | |
Anterior uveitis | 282 | 81 (28.7) | ≥50 | Most affected group | Dozie et al. [15] |
Punctate opacity | 241 | 79 (32.8) | ≥50 | Most affected group | Dozie et al. [15] |
197 | 54 (27.4) | ≥50 | Most affected group | Akogun [131] | |
Sclerosing keratitis | 232 | 93 (40.1) | ≥50 | Most affected group | Dozie et al. [15] |
247 | 59 (23.9) | ≥50 | Most affected group | Akogun [131] | |
Blindness | 18 | 15 (83.3) | ≥50 | Most affected group | Anosike et al. [12] |
6 | 6 (100.0) | ≥50 | Only group affected | Dozie et al. [15] | |
179 | 51 (28.5) | ≥50 | Second most affected group | Okoro et al. [114] | |
1 | 1 (100.0) | ≥50 | Only group affected | Mbanefo et al. [116] | |
2 | 2 (100.0) | ≥50 | Only group affected | Sufi and Zainab [121] | |
434 | 246 (56.7) | ≥50 | Most affected group | Kirkwood et al. [130] | |
339 | 101 (29.8) | ≥50 | Most affected group | Akogun [131] | |
98 | 76 (77.6) | ≥50 | Most affected group | Schwartz et al. [136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shintouo, C.M.; Shey, R.A.; Mets, T.; Vanhamme, L.; Souopgui, J.; Ghogomu, S.M.; Njemini, R. Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role? Trop. Med. Infect. Dis. 2021, 6, 153. https://doi.org/10.3390/tropicalmed6030153
Shintouo CM, Shey RA, Mets T, Vanhamme L, Souopgui J, Ghogomu SM, Njemini R. Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role? Tropical Medicine and Infectious Disease. 2021; 6(3):153. https://doi.org/10.3390/tropicalmed6030153
Chicago/Turabian StyleShintouo, Cabirou Mounchili, Robert Adamu Shey, Tony Mets, Luc Vanhamme, Jacob Souopgui, Stephen Mbigha Ghogomu, and Rose Njemini. 2021. "Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role?" Tropical Medicine and Infectious Disease 6, no. 3: 153. https://doi.org/10.3390/tropicalmed6030153
APA StyleShintouo, C. M., Shey, R. A., Mets, T., Vanhamme, L., Souopgui, J., Ghogomu, S. M., & Njemini, R. (2021). Onchocerciasis Fingerprints in the Geriatric Population: Does Host Immunity Play a Role? Tropical Medicine and Infectious Disease, 6(3), 153. https://doi.org/10.3390/tropicalmed6030153