Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lunar beacon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2178 KiB  
Article
Moon Sensor Station to Improve the Performance of Lunar Satellite Navigation Systems
by Mauro Leonardi, Gheorghe Sirbu, Mattia Carosi, Cosimo Stallo and Carmine Di Lauro
Sensors 2025, 25(12), 3675; https://doi.org/10.3390/s25123675 - 12 Jun 2025
Viewed by 496
Abstract
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives [...] Read more.
Today, Moon exploration is driven by the desire to expand the human presence beyond Earth and to use its resources. This requires the development of reliable navigation systems that can provide positioning information accurately and continuously on the lunar surface and orbits. Initiatives such as Moonlight (by ESA) and the Cislunar Autonomous Positioning System project (by NASA) are underway to address this challenge. The aim is to use ranging signals transmitted by satellites, similar to Earth’s GNSS, for lunar user positioning. This paper proposes a solution that involves local sensors deployed on the Moon surface to enhance the performance of the satellite system. These sensors can serve as differential reference stations, correcting satellite pseudorange measurements obtained by lunar surface receivers. The local sensor can also be used as a pseudolite, transmitting satellite-like signals to improve system availability and accuracy in obstructed areas. Additionally, the local sensor can act as an independent beacon that provides range and angle measurements. Higher navigation performance can be achieved by increasing the complexity of the system, depending on the implemented solution. This paper proposes and shows the concept, the intial design, and a preliminary definition of the protocol for the third solution. The three different solutions are compared in terms of position accuracy by exploiting the Cramér–Rao Lower-Bound formulation and Monte Carlo simulations. Finally, possible implementations for future use on the Moon are discussed. Full article
Show Figures

Figure 1

14 pages, 705 KiB  
Technical Note
Sensing Lunar Dust Density Using Radio Science Signals of Opportunity
by Kamal Oudrhiri, Yu-Ming Yang and Daniel Erwin
Remote Sens. 2025, 17(11), 1940; https://doi.org/10.3390/rs17111940 - 4 Jun 2025
Viewed by 619
Abstract
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions [...] Read more.
Previous lunar missions, such as Surveyor, Apollo, and the Lunar Atmosphere and Dust Environment Explorer (LADEE), have played a pivotal role in advancing our understanding of the lunar exosphere’s dynamics and its relationship with solar wind flux. The insights gained from these missions have laid a strong foundation for our current knowledge. However, due to insufficient near-surface observations, the scientific community has faced challenges in interpreting the phenomena of lunar dust lofting and levitation. This paper introduces the concept of signals of opportunity (SoOP), which utilizes radio occultation (RO) to retrieve the near-surface dust density profile on the Moon. Gravity Recovery and Interior Laboratory (GRAIL) radio science beacon (RSB) signals are used to demonstrate this method. By mapping the concentration of lunar near-surface dust using RO, we aim to enhance our understanding of how charged lunar dust interacts with surrounding plasma, thereby contributing to future research in this field and supporting human exploration of the Moon. Additionally, the introduced SoOP will be able to provide observational constraints to physical model development related to lunar surface particle sputtering and the reactions of near-surface dust in the presence of solar wind and electrostatically charged dust grains. Full article
Show Figures

Figure 1

10 pages, 1430 KiB  
Proceeding Paper
Improvement of PNT Performances Using DLCNS in the Lunar Navigation System
by Andrea Massaccesi, Marco Fortunato, Jacopo Capolicchio and Lorenzo Marchionne
Eng. Proc. 2025, 88(1), 18; https://doi.org/10.3390/engproc2025088018 - 25 Mar 2025
Viewed by 336
Abstract
The increasing complexity of lunar exploration missions necessitates stricter navigation requirements, especially when human life is involved. Extensive research is currently being conducted on various positioning systems suitable for the lunar environment. These include both the exploitation of terrestrial GNSS (Global Navigation Satellite [...] Read more.
The increasing complexity of lunar exploration missions necessitates stricter navigation requirements, especially when human life is involved. Extensive research is currently being conducted on various positioning systems suitable for the lunar environment. These include both the exploitation of terrestrial GNSS (Global Navigation Satellite System) signals, and the deployment of a lunar-dedicated satellite system known as the Lunar Communication and Navigation Service (LCNS). In order to meet the demanding navigation requirements, the usage of one or more lunar beacons to enhance Positioning, Navigation, and Timing (PNT) performance for different assets is under investigation to complement the LCNS system. This research aims to demonstrate the improvement of PNT accuracy by exploiting Differential LCNS (DLCNS) positioning techniques. To this end, both Single Point Positioning (SPP) and DLCNS techniques along with estimation algorithms such as Weighted Least Squares (WLS) and Extended Kalman Filter (EKF) were developed in a simulated lunar environment to assess their performances. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

19 pages, 1625 KiB  
Article
A Distributed Radio Beacon/IMU/Altimeter Integrated Localization Scheme with Uncertain Initial Beacon Locations for Lunar Pinpoint Landing
by Rongjun Mu, Yuntian Li, Rubin Luo, Bingzhi Su and Yongzhi Shan
Sensors 2020, 20(19), 5643; https://doi.org/10.3390/s20195643 - 2 Oct 2020
Cited by 2 | Viewed by 3331
Abstract
As a growing number of exploration missions have successfully landed on the Moon in recent decades, ground infrastructures, such as radio beacons, have attracted a great deal of attention in the design of navigation systems. None of the available studies regarding integrating beacon [...] Read more.
As a growing number of exploration missions have successfully landed on the Moon in recent decades, ground infrastructures, such as radio beacons, have attracted a great deal of attention in the design of navigation systems. None of the available studies regarding integrating beacon measurements for pinpoint landing have considered uncertain initial beacon locations, which are quite common in practice. In this paper, we propose a radio beacon/inertial measurement unit (IMU)/altimeter localization scheme that is sufficiently robust regarding uncertain initial beacon locations. This scheme was designed based on the sparse extended information filter (SEIF) to locate the lander and update the beacon configuration at the same time. Then, an adaptive iterated sparse extended hybrid filter (AISEHF) was devised by modifying the prediction and update stage of SEIF with a hybrid-form propagation and a damping iteration algorithm, respectively. The simulation results indicated that the proposed method effectively reduced the error in the position estimations caused by uncertain beacon locations and made an effective trade-off between the estimation accuracy and the computational efficiency. Thus, this method is a potential candidate for future lunar exploration activities. Full article
(This article belongs to the Special Issue Advanced Perception-Planning Fusion Technology in Robotics)
Show Figures

Figure 1

Back to TopTop