Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = low-voltage operations OPT

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2332 KiB  
Article
Fully Printed Organic Phototransistor Array with High Photoresponse and Low Power
by Yuan Tan, Xinwei Zhang, Rui Pan, Wei Deng, Jialin Shi, Tianxing Lu, Junye Zhang, Jiansheng Jie and Xiujuan Zhang
Chemosensors 2023, 11(4), 231; https://doi.org/10.3390/chemosensors11040231 - 7 Apr 2023
Cited by 1 | Viewed by 3730
Abstract
Organic phototransistors (OPTs) as optical chemical sensors have progressed excitingly in recent years, mainly due to the development of new materials, new device structures, and device interfacial engineering. Exploiting the maximum potential of low-cost and high-throughput fabrication of organic electronics and optoelectronics requires [...] Read more.
Organic phototransistors (OPTs) as optical chemical sensors have progressed excitingly in recent years, mainly due to the development of new materials, new device structures, and device interfacial engineering. Exploiting the maximum potential of low-cost and high-throughput fabrication of organic electronics and optoelectronics requires devices that can be manufactured in a fully printed way that also have a low operation voltage. In this work, we demonstrate a fully printed fabrication process that enables the realization of a high-yield (~90%) and low-voltage OPT array. By solution printing of a high-quality organic crystalline thin film on the pre-printed electrodes, we create a van der Waals contact between the metal and organic semiconductor, resulting in a small subthreshold swing of 445 mV dec−1 with a signal amplification efficiency over 5.58 S A−1. Our OPTs thus exhibit both a low operation voltage of −1 V and a high photosensitivity over 5.7 × 105, making these devices suitable for a range of applications requiring low power consumption. We further demonstrate the capability of the low-voltage OPT array for imaging and show high imaging contrasts. These results indicate that our fabrication process may provide an entry into integrated and low-power organic optoelectronic circuits fabricated by scalable and cost-effective methods for real-world applications. Full article
(This article belongs to the Special Issue Field-Effect Transistor-Based Sensors)
Show Figures

Figure 1

12 pages, 3010 KiB  
Article
Dynamic Photoresponse of a DNTT Organic Phototransistor
by Marcello Campajola, Paolo Di Meo, Francesco Di Capua, Paolo Branchini and Alberto Aloisio
Sensors 2023, 23(5), 2386; https://doi.org/10.3390/s23052386 - 21 Feb 2023
Cited by 2 | Viewed by 2706
Abstract
The photosensitivity, responsivity, and signal-to-noise ratio of organic phototransistors depend on the timing characteristics of light pulses. However, in the literature, such figures of merit (FoM) are typically extracted in stationary conditions, very often from IV curves taken under constant light exposure. In [...] Read more.
The photosensitivity, responsivity, and signal-to-noise ratio of organic phototransistors depend on the timing characteristics of light pulses. However, in the literature, such figures of merit (FoM) are typically extracted in stationary conditions, very often from IV curves taken under constant light exposure. In this work, we studied the most relevant FoM of a DNTT-based organic phototransistor as a function of the timing parameters of light pulses, to assess the device suitability for real-time applications. The dynamic response to light pulse bursts at ~470 nm (close to the DNTT absorption peak) was characterized at different irradiances under various working conditions, such as pulse width and duty cycle. Several bias voltages were explored to allow for a trade-off to be made between operating points. Amplitude distortion in response to light pulse bursts was also addressed. Full article
Show Figures

Figure 1

Back to TopTop