Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = low pressure compressor preliminary design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1857 KiB  
Article
Preliminary Assessment of Geometric Variability Effects Through a Viscous Through-Flow Model Applied to Modern Axial-Flow Compressor Blades
by Arnaud Budo, Jules Bartholet, Thibault Le Men, Koen Hillewaert and Vincent E. Terrapon
Int. J. Turbomach. Propuls. Power 2025, 10(2), 6; https://doi.org/10.3390/ijtpp10020006 - 1 Apr 2025
Viewed by 639
Abstract
An important question for turbomachine designers is how to deal with blade and flowpath geometric variabilities stemming from the manufacturing process or erosion during the component lifetime. The challenge consists of identifying where stringent manufacturing tolerances are absolutely necessary and where looser tolerances [...] Read more.
An important question for turbomachine designers is how to deal with blade and flowpath geometric variabilities stemming from the manufacturing process or erosion during the component lifetime. The challenge consists of identifying where stringent manufacturing tolerances are absolutely necessary and where looser tolerances can be used as some geometric variations have little or no effects on performance while others do have a significant impact. Because numerical simulations based on Reynolds-averaged Navier–Stokes (RANS) equations are computationally expensive for a stochastic analysis, an alternative approach is proposed in which these simulations are complemented by cheaper through-flow simulations to provide a finer exploration of the range of variations, in particular in the context of robust design. The overall goal of the present study is to evaluate the adequacy of a viscous time-marching through-flow solver to predict geometric variability effects on compressor performance and, in particular, to capture the main trends. Although the computational efficiency of such a low-fidelity solver is useful for parametric studies, it is known that the involved assumptions and approximations associated with the through-flow (TF) approach introduce errors in the performance prediction. Thus, we first evaluate the model with respect to its underlying assumptions and correlations. To accomplish this, TF simulations are compared to RANS simulations applied to a modern low-pressure compressor designed by Safran Aero Boosters. On the one hand, the TF simulations are fed with the exact radial distribution of the correlation parameters using RANS input data in order to isolate the modeling error from correlation empiricism. Moreover, in the context of multi-fidelity optimization, such distributions can be predicted using the more detailed RANS simulations that are performed on selected operating points. On the other hand, correlations from the literature are assessed and improved. It is shown that the solver provides realistic predictions of performance but is highly sensitive to the underlying correlations. Then, two modeling aspects linked to the blade leading edge, namely incidence correction and camber line computation, are discussed. As geometric variability precisely at the blade leading edge has a significant impact on the performance, we assess how these two aspects influence the variability propagation in this region. Moreover, we propose a strategy to mitigate these model uncertainties, and geometric variabilities are introduced at the blade leading edge in order to quantify the resulting variation in performance. Finally, within the scope of this preliminary study, perturbations of the three-dimensional position of undeformed stator blades and deformations of the hub and shroud contours are introduced one factor at a time per simulation. Their range is defined based on the tolerance limits typically imposed in the industry and on observed manufacturing variability. It is found that the through-flow model broadly provides realistic predictions of performance variations resulting from the imposed geometric variations. These results are a promising first step towards the use of the through-flow modeling approach for geometric uncertainty quantification. Full article
Show Figures

Figure 1

26 pages, 5286 KiB  
Article
0-D Dynamic Performance Simulation of Hydrogen-Fueled Turboshaft Engine
by Mattia Magnani, Giacomo Silvagni, Vittorio Ravaglioli and Fabrizio Ponti
Aerospace 2024, 11(10), 816; https://doi.org/10.3390/aerospace11100816 - 6 Oct 2024
Cited by 2 | Viewed by 1619
Abstract
In the last few decades, the problem of pollution resulting from human activities has pushed research toward zero or net-zero carbon solutions for transportation. The main objective of this paper is to perform a preliminary performance assessment of the use of hydrogen in [...] Read more.
In the last few decades, the problem of pollution resulting from human activities has pushed research toward zero or net-zero carbon solutions for transportation. The main objective of this paper is to perform a preliminary performance assessment of the use of hydrogen in conventional turbine engines for aeronautical applications. A 0-D dynamic model of the Allison 250 C-18 turboshaft engine was designed and validated using conventional aviation fuel (kerosene Jet A-1). A dedicated, experimental campaign covering the whole engine operating range was conducted to obtain the thermodynamic data for the main engine components: the compressor, lateral ducts, combustion chamber, high- and low-pressure turbines, and exhaust nozzle. A theoretical chemical combustion model based on the NASA-CEA database was used to account for the energy conversion process in the combustor and to obtain quantitative feedback from the model in terms of fuel consumption. Once the engine and the turbomachinery of the engine were characterized, the work focused on designing a 0-D dynamic engine model based on the engine’s characteristics and the experimental data using the MATLAB/Simulink environment, which is capable of replicating the real engine behavior. Then, the 0-D dynamic model was validated by the acquired data and used to predict the engine’s performance with a different throttle profile (close to realistic request profiles during flight). Finally, the 0-D dynamic engine model was used to predict the performance of the engine using hydrogen as the input of the theoretical combustion model. The outputs of simulations running conventional kerosene Jet A-1 and hydrogen using different throttle profiles were compared, showing up to a 64% reduction in fuel mass flow rate and a 3% increase in thermal efficiency using hydrogen in flight-like conditions. The results confirm the potential of hydrogen as a suitable alternative fuel for small turbine engines and aircraft. Full article
Show Figures

Figure 1

25 pages, 7890 KiB  
Article
Surrogate Models for Performance Prediction of Axial Compressors Using through-Flow Approach
by Xiaoxiong Wu, Bo Liu, Nathan Ricks and Ghader Ghorbaniasl
Energies 2020, 13(1), 169; https://doi.org/10.3390/en13010169 - 30 Dec 2019
Cited by 8 | Viewed by 4034
Abstract
Two-dimensional design and analysis issues on the meridional surface, which is important in the preliminary design procedure of compressors, are highly dependent on the accuracy of empirical models, such as the prediction of total pressure loss model and turning flow angle. Most of [...] Read more.
Two-dimensional design and analysis issues on the meridional surface, which is important in the preliminary design procedure of compressors, are highly dependent on the accuracy of empirical models, such as the prediction of total pressure loss model and turning flow angle. Most of the widely used models are derived or improved from experimental data of some specific cascades with low-loading and low-speed airfoil types. These models may work for most conventional compressors but are incapable of accurately estimating the performance for some specific cases like transonic compressors. The errors made by these models may mislead the final design results. Therefore, surrogate models are developed in this work to reduce the errors and replace the conventional empirical models in the through-flow calculation procedure. A group of experimental data considering a two-stage transonic compressor is used to generate the airfoils database for training the surrogate models. Sensitivity analysis is applied to select the most influential features. Two supervised learning approaches including support vector regression (SVR) and Gaussian process regression (GPR) are used to train the models with a Bayesian optimization algorithm to obtain the optimal hyper parameters. The trained models are integrated into the through-flow code based on streamline curvature method (SLC) to predict the overall performance and internal flow field of the transonic compressor on five rotational speed lines for validation. The predictions are compared with the experimental data and the results of conventional empirical models. The comparison shows that SVR and GPR respectively reduce the predicted error of empirical models by 62.2% and 55.2% for the total pressure ratio and 48.4% and 50.1% for adiabatic efficiency on average. This suggests that the surrogate models constitute an alternative way to predict the performance of airfoils in through-flow calculation where empirical models are inefficient. Full article
Show Figures

Graphical abstract

34 pages, 16358 KiB  
Article
Investigation of Micro Gas Turbine Systems for High Speed Long Loiter Tactical Unmanned Air Systems
by James Large and Apostolos Pesyridis
Aerospace 2019, 6(5), 55; https://doi.org/10.3390/aerospace6050055 - 14 May 2019
Cited by 34 | Viewed by 12454
Abstract
In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro [...] Read more.
In this study, the on-going research into the improvement of micro-gas turbine propulsion system performance and the suitability for its application as propulsion systems for small tactical UAVs (<600 kg) is investigated. The study is focused around the concept of converting existing micro turbojet engines into turbofans with the use of a continuously variable gearbox, thus maintaining a single spool configuration and relative design simplicity. This is an effort to reduce the initial engine development cost, whilst improving the propulsive performance. The BMT 120 KS micro turbojet engine is selected for the performance evaluation of the conversion process using the gas turbine performance software GasTurb13. The preliminary design of a matched low-pressure compressor (LPC) for the proposed engine is then performed using meanline calculation methods. According to the analysis that is carried out, an improvement in the converted micro gas turbine engine performance, in terms of thrust and specific fuel consumption is achieved. Furthermore, with the introduction of a CVT gearbox, the fan speed operation may be adjusted independently of the core, allowing an increased thrust generation or better fuel consumption. This therefore enables a wider gamut of operating conditions and enhances the performance and scope of the tactical UAV. Full article
(This article belongs to the Collection Unmanned Aerial Systems)
Show Figures

Figure 1

Back to TopTop