Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = low friction arthroplasty

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4121 KB  
Review
Advances in the Tribological Research of Ceramic-on-Ceramic Artificial Joints
by Menglin Zhou, Zihan Lin, Xiaolu Jiang, Jianhua Jin, Qi Wan, Li Zhang and Zhaoxian Zheng
Lubricants 2026, 14(1), 36; https://doi.org/10.3390/lubricants14010036 - 14 Jan 2026
Viewed by 124
Abstract
Ceramic-on-ceramic (CoC) bearings are widely used in total hip arthroplasty due to their extremely low wear rate, excellent chemical stability, and good biocompatibility. They are considered one of the most reliable long-term friction bearing systems. Although frictional instability, lubrication regime transitions, and microstructural [...] Read more.
Ceramic-on-ceramic (CoC) bearings are widely used in total hip arthroplasty due to their extremely low wear rate, excellent chemical stability, and good biocompatibility. They are considered one of the most reliable long-term friction bearing systems. Although frictional instability, lubrication regime transitions, and microstructural damage mechanisms have been widely reported at the experimental and retrieval-analysis levels, current clinical evidence, limited by follow-up duration and event incidence, has not demonstrated a definitive negative impact on the clinical performance of fourth-generation ceramic components, including BIOLOX® delta. Data from national arthroplasty registries consistently demonstrate excellent survivorship and low complication rates for 4th-generation ceramics in both hard-on-soft and hard-on-hard configurations. The most reported causes for revision, such as infection, dislocation, aseptic loosening, and periprosthetic fracture, are not primarily associated with ceramic-related complications, such as ceramic fracture, excessive wear, squeaking, and revision, related to bearing failure; however, these mechanisms remain highly relevant for the design and evaluation of emerging ceramic materials and next-generation implant systems, where inadequate control may potentially impact long-term clinical performance. This review summarizes recent advances in the tribological research of CoC artificial joints, focusing on clinical tribological challenges, material composition and surface characteristics, lubrication mechanisms, wear and microdamage evolution, and third-body effects. Recent progress in ceramic toughening strategies, surface engineering, biomimetic lubrication simulation, and structural optimization is also discussed. Finally, future research directions are outlined to support the performance optimization and long-term reliability assessment of CoC artificial joint systems. Full article
(This article belongs to the Special Issue Tribology of Medical Devices)
Show Figures

Figure 1

15 pages, 3517 KB  
Article
Evaluation of Oxinium (Oxidized Zr2.5Nb) Femoral Heads in Hip Endoprostheses—Case Report
by Boštjan Kocjančič, Ema Kocjančič, Špela Tadel Kocjančič, Janez Kovač, Monika Jenko and Mojca Debeljak
Coatings 2025, 15(9), 1087; https://doi.org/10.3390/coatings15091087 - 16 Sep 2025
Viewed by 1483
Abstract
Total hip arthroplasty (THA) is a widely performed and successful surgical treatment for degenerative joint disease. With increasing use in younger and more active patients, the demand for durable, biocompatible, and low-wear implant materials has grown. Oxidized zirconium (Oxinium, Zr2.5Nb) was introduced as [...] Read more.
Total hip arthroplasty (THA) is a widely performed and successful surgical treatment for degenerative joint disease. With increasing use in younger and more active patients, the demand for durable, biocompatible, and low-wear implant materials has grown. Oxidized zirconium (Oxinium, Zr2.5Nb) was introduced as a promising femoral head material, combining the strength of metal with the low-friction properties of ceramic. Despite encouraging early results, clinical reports have documented complications including head wear, especially after dislocation, and metallosis. We present the case of a 64-year-old male who underwent primary THA in 2009 and required revision in 2021 due to severe metallosis. Notably, no dislocation was observed that could explain the damage to the Oxinium head. Surface and subsurface analyses using X-ray photoelectron spectroscopy (XPS) and micro-indentation hardness testing revealed wear and deformation inconsistent with Oxinium’s anticipated durability. These findings highlight the importance of the femoral head–polyethylene liner interface in implant longevity. Although Oxinium–XLPE articulations remain promising, risks such as damage to the femoral head, liner dislocation, impingement, and metallosis must be carefully considered. Surgical technique, liner placement, and locking mechanisms play critical roles in preventing failure. Further biomechanical and clinical studies are needed to optimize implant design and improve long-term outcomes. Full article
(This article belongs to the Section Bioactive Coatings and Biointerfaces)
Show Figures

Figure 1

45 pages, 2604 KB  
Systematic Review
Biomechanics of the Human Osteochondral Unit: A Systematic Review
by Matteo Berni, Gregorio Marchiori, Massimiliano Baleani, Gianluca Giavaresi and Nicola Francesco Lopomo
Materials 2024, 17(7), 1698; https://doi.org/10.3390/ma17071698 - 8 Apr 2024
Cited by 7 | Viewed by 3938
Abstract
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral [...] Read more.
The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding motion between bone segments. The OC unit is a multi-layer structure including articular cartilage, as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in maintaining the joint functionality; altered loading patterns can trigger biological processes that could lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to avoid degeneration beyond tissues’ recovery capabilities. A thorough comprehension on the mechanical behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview of the state-of-the-art—up to 2022—about the mechanical behaviour of the OC unit. A systematic search is performed, according to PRISMA standards, by focusing on studies that experimentally assess the human lower-limb joints’ OC tissues. A multi-criteria decision-making method is proposed to quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound and robust approaches. This review revealed that studies on human lower limbs are focusing on the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle and subchondral bone are poorly investigated. Compression and indentation are the most common experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also being able to provide information at the micro- and nanoscales. While a certain comparability among studies was highlighted, none of the identified testing protocols are currently recognised as standard for any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become common for describing the response of the articular cartilage, while the models describing the mechanical behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced studies have tested and modelled multiple tissues of the same OC unit but have done so individually rather than through integrated approaches. Therefore, efforts should be made in simultaneously evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques, e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential. Full article
(This article belongs to the Special Issue The 15th Anniversary of Materials—Recent Advances in Biomaterials)
Show Figures

Figure 1

20 pages, 7299 KB  
Review
Updates on Biomaterials Used in Total Hip Arthroplasty (THA)
by Liliana Savin, Tudor Pinteala, Dana Nicoleta Mihai, Dan Mihailescu, Smaranda Stefana Miu, Mihnea Theodor Sirbu, Bogdan Veliceasa, Dragos Cristian Popescu, Paul Dan Sirbu and Norin Forna
Polymers 2023, 15(15), 3278; https://doi.org/10.3390/polym15153278 - 2 Aug 2023
Cited by 17 | Viewed by 8653
Abstract
One of the most popular and effective orthopedic surgical interventions for treating a variety of hip diseases is total hip arthroplasty. Despite being a radical procedure that involves replacing bone and cartilaginous surfaces with biomaterials, it produces excellent outcomes that significantly increase the [...] Read more.
One of the most popular and effective orthopedic surgical interventions for treating a variety of hip diseases is total hip arthroplasty. Despite being a radical procedure that involves replacing bone and cartilaginous surfaces with biomaterials, it produces excellent outcomes that significantly increase the patient’s quality of life. Patient factors and surgical technique, as well as biomaterials, play a role in prosthetic survival, with aseptic loosening (one of the most common causes of total hip arthroplasty failure) being linked to the quality of biomaterials utilized. Over the years, various biomaterials have been developed to limit the amount of wear particles generated over time by friction between the prosthetic head (metal alloys or ceramic) and the insert fixed in the acetabular component (polyethylene or ceramic). An ideal biomaterial must be biocompatible, have a low coefficient of friction, be corrosion resistant, and have great mechanical power. Comprehensive knowledge regarding what causes hip arthroplasty failure, as well as improvements in biomaterial quality and surgical technique, will influence the survivability of the prosthetic implant. The purpose of this article was to assess the benefits and drawbacks of various biomaterial and friction couples used in total hip arthroplasties by reviewing the scientific literature published over the last 10 years. Full article
Show Figures

Figure 1

8 pages, 733 KB  
Article
Conversion of Failed Hip Hemiarthroplasty to Low Friction Arthroplasty (LFA)
by Levent Bayam, Efstathios Drampalos, Hajime Nagai and Peter Kay
J. Clin. Med. 2019, 8(4), 503; https://doi.org/10.3390/jcm8040503 - 12 Apr 2019
Cited by 7 | Viewed by 3557
Abstract
Purpose: We aimed to study clinical and radiological outcomes of conversion from hemiarthroplasty to Charnley hip replacement (CHR) with a particular concern over reported increased dislocation rate and literature review. Conversion of hip hemiarthroplasty to total hip replacement (THR) is a procedure reported [...] Read more.
Purpose: We aimed to study clinical and radiological outcomes of conversion from hemiarthroplasty to Charnley hip replacement (CHR) with a particular concern over reported increased dislocation rate and literature review. Conversion of hip hemiarthroplasty to total hip replacement (THR) is a procedure reported to have high rates of complications. In the literature, there is no specific study on small head conversion. The purpose of this study was to evaluate the conversion of failed hip hemiarthroplasty to CHR with the use of modern implants. Methods: The study included 42 patients, who underwent the above procedure. The operations were carried out using a modern Charnley-type THR with a 22-mm diameter of femoral head and a trans-trochanteric approach. The mean follow-up was 75.7 months (range 25–171). Radiographs from the last follow up were evaluated for loosening and other reasons of failure. Clinical outcome was assessed using postoperative pain, function scores, complications and implant survivorship as well as radiological evaluation. Charnley’s modified pain and mobility scoring system were used for clinical and Hodgkinson and Harris’ criteria were used for radiological assessment. Results: Functionally, all of the patients showed improvement. Mean improvement in the pain level was by average of 2.4. On mobility assessment, 38 patients (90.4%) improved. Three patients (7.1%) had recurrent infections and three (4.8%) cases were treated with revision surgery and pseudarthrosis. Further complications occurred in 19.1%, not requiring operative treatment. On radiological evaluation, one (2.4%) case showed cup demarcation without bone loss, two (4.8%) cup migration, and one (2.4%) stem demarcation. Kaplan Meier survival analysis showed a survival of 90% at 96 months of follow up (95% CI (confidence interval), 60–90). Conclusion: Larger head might not be the answer to decrease the dislocation rate. Complication rates during revision of hip hemiarthroplasty to modern CHR with 22.225-mm head diameter were comparable to first-time THR revision despite having a smaller head. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

24 pages, 1794 KB  
Review
Materials for Hip Prostheses: A Review of Wear and Loading Considerations
by Massimiliano Merola and Saverio Affatato
Materials 2019, 12(3), 495; https://doi.org/10.3390/ma12030495 - 5 Feb 2019
Cited by 297 | Viewed by 28018
Abstract
Replacement surgery of hip joint consists of the substitution of the joint with an implant able to recreate the articulation functionality. This article aims to review the current state of the art of the biomaterials used for hip implants. Hip implants can be [...] Read more.
Replacement surgery of hip joint consists of the substitution of the joint with an implant able to recreate the articulation functionality. This article aims to review the current state of the art of the biomaterials used for hip implants. Hip implants can be realized with different combination of materials, such as metals, ceramics and polymers. In this review, we analyze, from international literature, the specific characteristics required for biomaterials used in hip joint arthroplasty, i.e., being biocompatible, resisting heavy stress, opposing low frictional forces to sliding and having a low wear rate. A commentary on the evolution and actual existing hip prostheses is proposed. We analyzed the scientific literature, collecting information on the material behavior and the human-body response to it. Particular attention has been given to the tribological behavior of the biomaterials, as friction and wear have been key aspects to improve as hip implants evolve. After more than 50 years of evolution, in term of designs and materials, the actual wear rate of the most common implants is low, allowing us to sensibly reduce the risk related to the widespread debris distribution in the human body. Full article
Show Figures

Figure 1

Back to TopTop