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Abstract: The damping system ensured by the osteochondral (OC) unit is essential to deploy the forces
generated within load-bearing joints during locomotion, allowing furthermore low-friction sliding
motion between bone segments. The OC unit is a multi-layer structure including articular cartilage,
as well as subchondral and trabecular bone. The interplay between the OC tissues is essential in
maintaining the joint functionality; altered loading patterns can trigger biological processes that could
lead to degenerative joint diseases like osteoarthritis. Currently, no effective treatments are available to
avoid degeneration beyond tissues’ recovery capabilities. A thorough comprehension on the mechanical
behaviour of the OC unit is essential to (i) soundly elucidate its overall response to intra-articular
loads for developing diagnostic tools capable of detecting non-physiological strain levels, (ii) properly
evaluate the efficacy of innovative treatments in restoring physiological strain levels, and (iii) optimize
regenerative medicine approaches as potential and less-invasive alternatives to arthroplasty when
irreversible damage has occurred. Therefore, the leading aim of this review was to provide an overview
of the state-of-the-art—up to 2022—about the mechanical behaviour of the OC unit. A systematic
search is performed, according to PRISMA standards, by focusing on studies that experimentally assess
the human lower-limb joints’ OC tissues. A multi-criteria decision-making method is proposed to
quantitatively evaluate eligible studies, in order to highlight only the insights retrieved through sound
and robust approaches. This review revealed that studies on human lower limbs are focusing on
the knee and articular cartilage, while hip and trabecular bone studies are declining, and the ankle
and subchondral bone are poorly investigated. Compression and indentation are the most common
experimental techniques studying the mechanical behaviour of the OC tissues, with indentation also
being able to provide information at the micro- and nanoscales. While a certain comparability among
studies was highlighted, none of the identified testing protocols are currently recognised as standard for
any of the OC tissues. The fibril-network-reinforced poro-viscoelastic constitutive model has become
common for describing the response of the articular cartilage, while the models describing the mechanical
behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most advanced
studies have tested and modelled multiple tissues of the same OC unit but have done so individually
rather than through integrated approaches. Therefore, efforts should be made in simultaneously
evaluating the comprehensive response of the OC unit to intra-articular loads and the interplay between
the OC tissues. In this regard, a multidisciplinary approach combining complementary techniques,
e.g., full-field imaging, mechanical testing, and computational approaches, should be implemented
and validated. Furthermore, the next challenge entails transferring this assessment to a non-invasive
approach, allowing its application in vivo, in order to increase its diagnostic and prognostic potential.

Keywords: human; osteochondral unit; articular cartilage; subchondral bone; trabecular bone;
biomechanical analysis; mechanical behaviour; experimental approach; constitutive model;
systematic review
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1. Introduction

The human osteochondral (OC) unit is a multilayer structure composed of hyaline
cartilage, here referred to as articular cartilage (AC), subchondral bone (SB), and trabecular
bone (TB) (Figure 1). This complex structure limits contact pressure within the joints of
the musculoskeletal system and distributes the surface load to the underlying bone, while
still allowing a sliding motion between bone segments [1]. While the AC covering the joint
surface provides low-friction motion, each layer of the OC unit contributes to the overall
mechanical stiffness of the joint surface and undergoes different levels of strain during
locomotion [2–4].
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Figure 1. Scheme of the osteochondral unit structure, with particular focus on the knee joint, i.e.,
proximal tibia.

Maintaining the joint functionality relies on the homeostasis of the OC tissues, i.e., the
synergic mechanical crosstalk between cartilaginous and mineralised tissues [5,6]. Despite
the fact that there is not yet a full understanding of the factors promoting or impairing the
homeostasis—and, consequently, the mechanical response—of the OC tissues, evidence
suggests that changes in tissue strain levels may alter biochemical signals among tissues, as
supported by mechano-regulation theories [7,8]. Traumatic events and the onset of patholo-
gies such as osteoarthritis (OA) (for detail about the burden of OA see Appendix A.1) can
induce alterations in the strain distribution across the OC tissues, modifying the biochemi-
cal signals that regulate cellular functions [9] and, therefore, producing changes in the main
features, i.e., structure and composition, of the OC tissues [10–12]. AC tissue degradation,
characterised by the loss of superficial proteoglycans (PGs), degradation of collagen fibres,
and an increase in interstitial fluid, leads to fibrillation of the AC surface, which is the first
visible sign of the pathology onset [13,14]. A significant increase in the remodelling of the
SB tissue has also been reported [15]. Over time, these changes degrade the mechanical
behaviour of the OC unit, further exacerbating alterations in strain levels [16] and, finally,
leading to changes beyond tissues’ recovery capabilities. A non-physiological mechanical
environment leads chondrocytes to stimulate catabolic activity [17,18] with the consequent
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degeneration of the tissue via PG depletion, increased tissue permeability, and destruction
of the collagen network [19,20]. AC delamination occurs, leading to joint space narrow-
ing and, ultimately, surface denudation [21]. Microfractures and neovascularisation take
place in the SB, triggering a reparative response with inflammation, leading, over time, to
subchondral sclerosis, osteophytosis, and cystic lesions [22–25].

As no effective treatments are currently available, a comprehensive understanding of
the OC unit’s biomechanics is essential to (i) elucidate its overall response to intra-articular
loads and, most importantly, (ii) assess the efficacy of proposed treatments in restoring
physiological levels of strain before irreversible damage occurs. Additionally, an in-depth
knowledge of the mechanical behaviour of the whole OC unit is crucial for the development
of tissue engineering approaches as an alternative to arthroplasty for severely altered OC
units, with consequent impaired joint function.

An examination of the literature reveals a lack of recent reviews specifically addressing
the OC unit, although there is a very recent review focusing on the human AC [26]—in
which the authors conclude by stating that there are still open gaps in understanding the
biomechanical properties of the tissue, and that future studies need to investigate them at
different dimensional scales—and three others on the biomechanics and mechanobiology
of the TB [27–29], suggesting that the study of the biomechanics of both healthy and
pathological TB remains an important way of understanding tissue complexity.

This systematic review aimed to provide an overview of the current trends and evi-
dence achieved through experimental techniques in studying the mechanical behaviour
of the OC unit. Firstly, a brief paragraph is included to provide foundational knowledge
on the constitutive models developed until 2000 for describing the mechanical behaviour
of the OC tissues. Despite the introductory nature of this first section, the reported infor-
mation is essential for a thorough understanding of the findings presented in this review.
Secondly, the results of a systematic search are reported, with a specific focus on the studies
that evaluated the mechanical behaviour of the OC tissues comprising the human lower-
limb joints, i.e., hip, knee, and ankle, through experimental testing. Studies conducted
between January 2000 and December 2022 were identified via a search on online electronic
databases. Data from eligible studies are retrieved, i.e., by focusing on (i) the type of
tissue, (ii) the experimental test, (iii) the dimensional scale, and (iv) the constitutive models
used to describe the mechanical behaviour of the tissues. Through the implementation
of a multi-criteria evaluation approach—which considered methodology, data processing,
and constitutive models—the reliability and reproducibility of each study were assessed.
Then, the current trends in the evaluation of the OC unit are reported, revealing (i) which
lower-limb joints and OC tissues are the most investigated and (ii) the main constitutive
models and parameters describing the mechanical behaviour of the OC tissues. Last, a brief
paragraph is included, highlighting the main techniques that can be employed to perform
a comprehensive assessment of the OC unit, e.g., to investigate the correlations between
tissue structure or composition and its mechanical behaviour.

By establishing the current understanding and identifying the areas lacking in OC unit
biomechanics knowledge, along with considering recent proposed approaches to address
the gaps through advancements in imaging technologies and experimental techniques, it
may be possible to elucidate the comprehensive response of the OC unit and to under-
stand how degenerative pathologies impair its features. This knowledge could improve
the diagnosis of joint pathologies and drive tissue engineering approaches towards the
development of multi-layer scaffolds better mimicking the response of the OC unit.



Materials 2024, 17, 1698 4 of 45

2. Constitutive Models of the Last Century

The mechanical behaviour of biological tissues—defined as response to external me-
chanical stimuli—is strictly dependent on their structure and composition and represents a
critical aspect determining their in vivo functions. Therefore, its understanding is essen-
tial to explain the standard physiology of the tissues, properly understand the onset and
progression of pathologies, and, thus, pave the way for the improvement of treatments
and tissue engineering approaches dealing with these kinds of diseases. The mechani-
cal behaviour of tissues—including the osteochondral ones—is generally explained by
using constitutive models describing the peculiar trend of the experimental data. Be-
sides mathematical laws, such models are defined by boundary conditions—describing
the environment surrounding the tissue, e.g., the bound between the AC and the under-
lying bone tissue, or some of the peculiarities of the testing technique—and theoretical
assumptions—e.g., describing the tissue structure and composition. By considering the
aim of this systematic review, in the following we reported the main constitutive models
applied to study the mechanical behaviour of the OC tissues. A brief description of these
models was provided in order to supply the basic knowledge required to better understand
the findings retrieved from the systematic review. An exhaustive discussion about the
peculiarities, advantages, and limitations of the constitutive models reported in this section
can be found by following the references provided.

Several constitutive continuum models have been proposed to describe the mechanical
behaviour of AC, SB, and TB before failure, i.e., when subjected to normal physiological
conditions. These models aim to describe the relationship between the applied load and the
resulting tissue deformation at load levels the tissue can withstand without being damaged,
i.e., no assumptions are made regarding unrecoverable deformation or failure of the tissue.

The simplest model is the linear elastic model. It assumes that the tissue deforms
proportionally to the applied load. The knowledge of the elastic constants—the number
of independent parameters depending on the material symmetry (isotropic/transversely
isotropic/orthotropic/anisotropic)—allows the description of a perfectly linear mechanical
response [30]. Nonlinear responses of the tissue can be predicted by using hyperelastic
models [31]. These models assume that the tissue response is derivable from a strain energy
density function. Different strain energy density functions have been used in the following
models [32]: the neo-Hookean model [33]; the polynomial model [34]; the Fung model [35];
the Odgen model [36]; the Yeoh model [37]; the Arruda–Boyce model [38]; and the Gent
model [39]. Whatever the definition of the function, tissue deformation depends on the
applied load and does not depend on the loading rate. The aforementioned approaches
have been used to describe the mechanical behaviour of the mineralised tissues of the OC
unit [40] or the instantaneous response to indentation and the equilibrium response of the
AC [41–43].

More complex models have been proposed to describe the mechanical response of both
mineralised and cartilaginous tissues. Mineralised tissues are viscoelastic materials show-
ing time-dependent mechanical properties [44–47]. The time-dependent response of the TB
is only significant at high strain rates or under constant loads over time [45,48–51]. There-
fore, either poroelastic models [52,53] or viscoelastic models [54,55] have been proposed
to describe the time-dependent mechanical behaviour of the TB under such conditions.
As models other than the two mentioned families have been used since the year 2000,
the papers in which these models are described, and to which the reader must refer for
details, are also cited here to provide a complete background [56–60]. On the other hand,
the time-dependent response of the AC [61,62], due to tissue structure, cannot be neglected
except for instantaneous and equilibrium conditions (see previous paragraph). Therefore,
viscoelastic models have been proposed to describe the AC response over time [62,63].
However, a theory which separately considers the two phases of the AC soon became the
focus of model development. Indeed, the isotropic biphasic model (in detail, an incompress-
ible linearly elastic isotropic porous matrix filled with an incompressible nondissipative
fluid) used to describe the mechanical response of the AC dates from 1980 [64]. This
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model is conceptually different from the poroelastic model [56], but the two models are
equivalent under the assumption of incompressible constituents and quasistatic small
deformations [65]. From an experimental point of view, they can predict the behaviour
of the tissue in response to the stress–relaxation test [66,67]. The isotropic biphasic model
has been evolved into a linear transversely isotropic biphasic model [68] to describe the
anisotropic mechanical properties of AC. However, some inconsistencies between model
predictions and the observed equilibrium and stress relaxation behaviour of AC have been
reported [69].

In the isotropic biphasic model, the materials parameters are constant. The viscoelastic
behaviour is determined by “the diffusional drag of relative motion of the interstitial fluid
with respect to the solid matrix” [64]. Therefore, this model, as well as the mentioned linear
transversely isotropic evolutions, overlooks the fact that the matrix shows an intrinsic
viscoelasticity [70]. To describe the flow-independent viscoelasticity of the AC, the biphasic
model has been modified, first by making the solid phase viscoelastic in shear and elastic
in bulk deformation [71], and then by making the solid phase viscoelastic in both shear and
compression [72].

None of these models take into account the negatively charged glycosaminoglycan
chains, referred to as fixed charges. The interaction between fixed charges and mobile
ions are responsible for mechano-electrochemical phenomena, i.e., the attraction of fluid
into the tissue during swelling and the associated osmotic pressure [73,74]. The inclusion
of an ion phase, specifically monovalent cations (Na+) has led to the development of the
triphasic model [75]. This model has been further developed to include the fixed charges
(quadriphasic model), i.e., by considering the porous solid to be electrically charged [76].

This brief description of the constitutive models proposed to describe the mechani-
cal behaviour of the tissues as continua has intentionally neglected the damage criteria,
which identify the limit working conditions of individual tissues, as the following part
of this paper mainly focuses on the mechanical response of the tissues under non-critical
loading conditions.

3. Methods
3.1. Eligibility Criteria

This review specifically focused on scientific studies that investigate the mechanical
behaviour of the tissues composing the OC unit of human lower-limb joints—i.e., their
response to mechanical stimuli—by experimental approaches, and those that describe them
by the mechanical parameters proper of specific constitutive models fitting the experimental
force–displacement (or stress–strain) data. The following criteria were used to include
scientific studies: (i) tissues must be retrieved from human hip, knee, or ankle joints;
(ii) experimental design must be aimed at determining the mechanical behaviour of the
retrieved tissue, i.e., studies employing mechanical techniques and mechanical protocols
to stimulate cells and/or tissue engineering constructs during culture were excluded;
(iii) experimental data must be reported, i.e., computational studies relying on experimental
findings retrieved from previous studies were not considered eligible; (iv) experimental data
must not already be published in previous reports, i.e., studies reporting data previously
published with the purpose of addressing a different research question were excluded; and
(v) constitutive model/s must be used to compute the mechanical properties of tissues
from experimental data.

3.2. Search Strategies

The present systematic search was performed on online electronic databases—PubMed,
Scopus, and Web of Science Core Collection—according to the PRSIMA statement [77] (see
Figure 2 for the PRISMA flow diagram; the PRISMA checklist is provided in the Supplemen-
tary Materials). The search queries specific to each database are reported in the Appendix A
(see Table A1 of Appendix A.2). Scientific studies from January 2000 to December 2022
were included in this review if they met the eligibility criteria (see Section 3.1). Abstracts,
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reviews, letters, comments to the editor, protocols and recommendations, editorials, and
guidelines were excluded, together with scientific studies not written in English.

3.3. Study Selection

The achieved lists of studies were firstly submitted to public reference managers—i.e.,
Mendeley, www.mendeley.com; Rayyan, rayyan.qcri.org—to eliminate duplicates. Studies
were then screened by two reviewers (M.Be and G.M.), considering the title and abstract.
Any disagreement in the screening process was discussed by all authors and the thought of
the majority of the authors was considered as the decision-making choice.

3.4. Extraction of the Data

Data from eligible studies were retrieved and tabulated according to the clustering
reported in Table 1. Studies were clustered according to their type—i.e., modelling, method-
ological, investigative, or comparative—in order to properly evaluate the quality of their
main features, which depend on such a type (see Section 3.5 and Appendix A—Table A2).
In addition, the type of studies was also considered as a suitable indicator for suggesting
which aspects should be addressed in the future by studies focusing on the OC unit’s
mechanical behaviour. In this regard, the temporal trend of the eligible studies—clustered
according to (i) the joint from which the tissues were retrieved and (ii) the evaluated
tissue/s—could also provide information for indicating future research directions.

Table 1. Insight retrieved from eligible studies.

Insight Description

Reference Title and publication year

Joint Anatomical site/s—i.e., hip, knee, or ankle—from which tissue samples were excised

Tissue Type/s of tissue/s—i.e., AC, SB, TB—evaluated

Type of study

Modelling, i.e., a study proposing a new constitutive model or updating an existing one,
moreover providing an experimental application

Methodological, i.e., a study proposing a new experimental approach, or evaluating how the
tissues’ response varies depending on the testing parameters

Investigative, i.e., a study evaluating the mechanical parameter/s of tissue/s by investigating
distribution across the sample geometry, or a dependence on joint/s or on donor/s

Comparative, i.e., a study investigating how a pathological disease, or a specific treatment,
modifies the mechanical response of tissue/s compared to control/healthy condition

Layers
Whether a study focused on single tissues or evaluated the mechanical behaviour of the whole
osteochondral unit. The latter option means that the mechanical behaviour of multiple layers was
investigated and modelled simultaneously

Mechanical test Type of experimental approach applied to investigate tissue behaviour, e.g., compression,
indentation, tensile, and shear test

Dimensional scale Scale—i.e., millimetric, mm; micrometric, um; and/or nanometric, nm—at which the mechanical
behaviour of tissue/s was evaluated

Constitutive model/s Mathematical model/s used to compute the mechanical parameters of tissue/s; moreover, type
and numerosity of such parameters were also retrieved

Mechanical properties

Values of the mechanical parameters, strictly dependent on the constitutive model used to fit the
experimental data, e.g., Young’s modulus (elastic), creep (viscous), shear storage modulus
(dynamic), dissipated energy (plastic behaviour). Moreover, the numerosity of the computed
parameters was also noted.

Data processing

Highlights presence and reliability of statistical data analysis. Meaning of the analysis depends
on the type of study, as follows: goodness of fit for modelling studies; accuracy and precision of a
method for methodological studies; and benchmarking and power analysis for comparative and
investigative studies

www.mendeley.com
rayyan.qcri.org


Materials 2024, 17, 1698 7 of 45

Therefore, the distribution over time of the eligible studies, classified according to the
reported insight, was determined considering the publication year (Reference), by applying
a moving average filter, with a sliding window of length 3, across neighbouring elements.

3.5. Systematic Assessment of the Scientific Quality of the Studies

With the purpose of quantitatively evaluating eligible studies, the adaptation of a
specifically designed method [78] was proposed. To define the scientific quality of research
studies, the use of a multi-criteria decision analysis method is requested [79]. The Best
Worst Method (BWM) allows to perform such an analysis by few comparisons among the
metrics defined, according to the decision-maker’s perspective [79]. By setting the weights
of these metrics—computed according to a minmax model—and after summarizing their
extent in a global information—Aggregated Quality—the BWM allows a direct comparison
between eligible studies. Specifically focusing on the adaptation of the BWM to this sys-
tematic review, the following steps were carried out. First, the features (i) methodology,
i.e., exhaustivity of the experimental approaches, (ii) data processing, and (iii) constitutive
model/s (see Table 1) were assigned to a three-level rating, i.e., low, mid, and high (details
reported in Appendix A—Table A2). The choice of focusing on such specific features lies
in the fact that—according to the authors’ expertise—these aspects are the ones primarily
defining the reliability of the studies focused on the evaluation of the OC tissues’ mechanical
behaviour. Second, the global weights of the features were computed by defining numerical
coefficients—with values related to the preference of the best and of the worst metrics over
the others—and, consequently, by minimizing their maximum absolute difference [78].
Third, the ratings thus obtained were gathered in an aggregated score—Aggregate Quality
Score, in the range between 0 (lowest performance) and 2 (highest performance)—according
to the BWM. Details about the weights of the evaluated features and of the scoring sys-
tem are reported in Appendix A (Appendix A.3 and Table A2). To highlight the most
reliable experimental studies performed on the OC mechanical behaviour until now, the
eligible studies with the highest methodology score were discussed, and their findings
were tabulated. Therefore, information about (i) the testing techniques, (ii) the range of
the parameters describing the mechanical behaviour of the tissue/s, and (iii) the impact
of pathologies was discussed, differentiated by tissue, constitutive model—i.e., elastic,
hyperelastic, viscoelastic, plastic, and dynamic—and by the investigated dimensional scale.

4. Results and Discussion
4.1. Selection of the Studies

The initial literature search recovered 5804 studies. Of those, 3169 studies were
identified using Scopus, 1906 using Web of Science, and 729 were found on PubMed.
Aiming to eliminate duplicates, articles were run through Mendeley and Rayyan, removing
1902 studies. The remaining articles—i.e., 3902—were then screened considering their title
and abstract, resulting in 3699 studies discarded. The full text of the leftover 203 articles was
then reviewed, allowing for the removal of 73 additional studies due to non-compliance
with the eligibility criteria. The remaining studies—i.e., 130—were, finally, investigated.
The overall process is detailed in Figure 2, which maps out the number of records identified,
included, and excluded, as well as the reasons for exclusion. The review was registered to
the OSF registers (doi:10.17605/OSF.IO/BDCXJ).
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4.2. Trend over Time of Eligible Studies

The experimental studies investigating the mechanical behaviour of the OC tissues
belonging to human lower-limb joints show an increase over time (“Total” series in Figure 3,
which shows the temporal trend of studies divided by tissue or joint). By focusing on the
investigated tissue, the majority of eligible studies assessed the mechanical response of AC
(54%), followed by TB (42%), and SB (4%). An increase over time of the studies evaluating
AC is suggested, while TB and SB studies seem to have reached an overall stable trend
since 2016.
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the year for which the point is missing.

Concerning the joint from which tissues are retrieved, the knee seems to be the most
common articulation (60%), followed by the hip (36%) and the ankle (5%). The number of
studies focusing on knee OC tissues suggests an increase over time, while studies on hip
and ankle joints show a decreasing and stable trend, respectively.

According to these findings, the increase in studies focusing on the knee and on AC is
the primary factor contributing to the suggested gradual rise in the mechanical assessment
of OC tissues. Therefore, some mechanical evaluations are still missing, i.e., ankle tibial AC,
hip acetabular SB, and ankle talar TB. Clearly, the most studied tissues and joints are the
most harvestable ones, with a large articular surface, e.g., a lot of articular tissue can be har-
vested from joint arthroplasty, where replacements of hips and knees are far more common
than of ankles; SB is thinner than AC and TB and, therefore, more difficult to be tested (see
Section 4.4). This evidence does not imply that there are less important tissues or joints but,
conversely, that there is a gap worth investigating. For example, the SB has been shown
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to be a possible target for preventive measures of OA [80], while, in relation to the ankle,
total arthroplasty has recently gained interest [81]. Therefore, scientists should prove that
results regarding specific tissues and sites can be generalised and should advance experi-
mental techniques to reach more difficult—in terms of testability—tissues and articulations,
eventually reaching the exploration of the whole OC unit (see Sections 4.3–4.5 and 5).

Regarding the Aggregate Quality Score of the eligible studies, its temporal trend—
differentiated by tissue and joint—is reported in Figure 4. Besides the few discontinuities
highlighted by the studies focusing on the SB and the ankle, no visual differences among
tissues and joints are suggested in terms of Aggregate Quality Score.
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The temporal trend of the Aggregate Quality suggests an initial and progressive
increase up to 2012–2013, from which a stable tendency seems to be reached. Starting
from 2018 to 2019, the trend decreased instead, suggesting the implementation of less
rigorous studies, i.e., overall of those investigating AC tissue and knee, more numerous
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(see Figure 3). By considering the range of the Aggregate Quality—i.e., between 0 and
2—and the scores obtained by the studies herein defined as eligible, the majority of them
reached a score above the mid-level, i.e., 38% between 1 and 1.5 and 38% between 1.5 and
2, highlighting an overall good scientific quality of the experimental assessment of the OC
tissues’ biomechanics.

By looking at the Aggregate Quality Score of a specific study, it can be decided if
more or less confidence should be given to the provided results. On the other hand, the
scores can be used for selecting the most reliable and replicable studies of interest. A large
amount of eligible studies (80 out of 130) did not reach the highest Aggregate Quality
Score, e.g., because of lacking details about the testing protocol or missing/not suitable
statistical analysis. Indeed, the scoring system herein proposed can also be useful as a guide
considering the following fundamental, but still often missed, aspects: (i) experimental
protocols should be designed and presented in a reliable and repeatable manner, allowing
for a comparison among different studies; (ii) statistical analysis should be consistent to
the specific design of the study, e.g., non-parametric methods should be preferred on
parametric ones any time that assumptions on statistical distributions are not verified; (iii) a
power analysis on sample size should be provided a priori or, at least, its absence should
be properly discussed as a main limitation in arguing about the evidences achieved by
the study.

As reported at the end of Section 3.5—and moreover considering that methodology
is the feature primarily defining the Aggregate Quality of a study—in the following, the
insights from eligible studies reaching the highest methodological score are reported,
mainly differentiated by tissue, mechanical response, and investigated scale.

4.3. Articular Cartilage

The mechanical behaviour of AC has been investigated primarily at the millimetre
scale, with very few studies evaluating the response of the tissue at the microscale. The
main mechanical features retrieved from studies focusing on the mechanical response of AC
are related to its elastic behaviour (Table 2). In this regard, and despite AC response being
described frequently as a linear elastic material, different assumptions and, thus, models
are used to compute the relative mechanical properties of the tissue. The Hayes model is
used to describe the tissue’s instantaneous elastic response, i.e., by defining the indentation
of AC as a mixed boundary problem satisfying the field equations of the linear theory
of elasticity for homogeneous, isotropic materials [41]. While the linear elasticity—and
its relative parameters—can be derived from the analysis of experimental data obtained
by different experimental techniques—i.e., tensile, shear, compressive, and indentation
tests—the Hayes model is applied only to indentation-derived data.

Also regarding the evaluation of AC elastic behaviour, the biphasic [82,83] and the
poro-viscoelastic fibril-network reinforced [84–86] models describe the response of the tis-
sue more exhaustively, considering equilibrium phenomena. The biphasic model describes
AC as a homogeneous binary mixture of an incompressible, isotropic, linearly elastic solid
and an incompressible, inviscid fluid. In addition, such a model is based on the following
assumptions, i.e., (i) the AC is a uniform layer of the biphasic material of thickness h,
(ii) AC is bonded to the calcified-SB substrate, and (iii) the calcified-SB substrate is rigid and
impervious to fluid flow. As the main outcome, the biphasic model provides the aggregate
modulus of AC, representing the elastic behaviour of the tissue at equilibrium, i.e., once the
viscosity related to both flow-dependent and independent phenomena are exhausted [69].
Despite mainly being included in the optimisation of the fitting procedure, additional
parameters that can be retrieved by applying the biphasic model are Poisson’s ratio and
the hydraulic permeability of the tissue [87]. The experimental tests providing boundary
conditions suitable to verify the hypotheses of the biphasic model are indentation and
compression, applied through a porous indenter or septum, respectively, and by creep or
stress–relaxation protocols [88].
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The poro-viscoelastic fibril-network reinforced model can be considered as a refine-
ment of the previous model, in the effort of overcoming the main limitation related to
the assumption that fluid-dependent phenomena are the only phenomena responsible for
AC viscoelasticity. In this regard, such a model describes the contribution of the collagen
network and of the non-fibrillar matrix—i.e., PGs saturated with fluid—separately, there-
fore considering their different role in withstanding the external load [88]. Moreover, the
poro-viscoelastic fibril-network reinforced model defines the matrix as being supported
by a network of nonlinear fibrils distributed in the radial, circular, and vertical directions.
Consequently, the response to compressive stress is provided only by the non-fibrillar ma-
trix, while the response to tensile and shear stress lies in the contributions of both fibrillar
and non-fibrillar components. Through the application of such a constitutive model, it is
possible to compute parameters related to the elastic response of AC, i.e., the fibril network,
and the non-fibrillar matrix modulus, but also to calculate the permeability of the tissue.
Moreover, the poro-viscoelastic fibril-network reinforced model allows the investigation
of rate-dependent phenomena through testing protocols based on multi-step solicitations.
The experimental tests employed to retrieve the parameters of such a model are compres-
sion and indentation—this last one is associated with a finite element approach [86,89],
particularly by applying protocols based on stress–relaxation.

According to the above reported findings, the elastic behaviour of AC at the millimetre
scale has been primarily evaluated by indentation [89–98] and compression [92,98–106],
followed by tensile [93,107] and shear [103] tests (Table 2).

The combination of water and collagen contents accounted for approximately 25% of
the variability in the compressive modulus [102]. Additionally, the compressive modulus
depends on the rate of loading, which can induce a significant increase in its value [102].
Repetitive loading, such as that experienced during long-distance running, results in water
exudation, as indicated by a decrease in T1rho relaxation times [100], positively correlated
with water content, as measured using Magnetic Resonance Imaging (MRI) [108,109]. The
local composition of AC determines its strain level, which has been demonstrated to be
both depth-dependent and anatomical region-dependent [103].

Regarding the instantaneous modulus of AC, methodological studies suggest to
properly define the boundary conditions of indentation tests, i.e., by defining experimental
protocols based on nominal deformation and, moreover, considering the possible bias
induced by different indenter diameters [90,98,107] (Table 2). In addition, the instantaneous
modulus depends on the testing technique, providing higher values in the case of the tensile
test, compared to confined and standard compression [107]. As reported for the elastic
modulus, the instantaneous modulus also exhibits significant heterogeneity across articular
surfaces [104]. With the purpose of providing methodologies suitable to investigate the
AC’s mechanical response through routine clinical assessments, the outcomes achieved
using the arthroscopic ultrasound method show results to be significantly correlated with
the AC instantaneous modulus [96].

Besides instantaneous response, the equilibrium behaviour of AC—which can be
computed using different constitutive models [86,110]—also strongly depends on the
anatomical location [107], moreover being depth-dependent—at least considering the tissue
tensile behaviour [93]. Regarding possible relations between AC structure/composition
and its response, significant correlations were found (i) between the collagen orientation
angle and the strain-dependent fibril network modulus and (ii) between the nonfibrillar
matrix modulus and the PG content [111]. In the perspective of providing potential non-
mechanical approaches evaluating the AC mechanical behaviour, quantitative MRI—i.e.,
through T1 and T2 relaxation times—can indirectly provide information on the tissue
equilibrium modulus, as well as its site-dependent variations [105]. Moreover, optical
spectroscopy based on the visible and near infrared range—retrieved using an arthroscopic
approach—successfully predicted the AC equilibrium modulus [94].
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Table 2. Experimental studies focusing on AC elastic behaviour at the millimetre scale.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Kurkijärvi
et al.
[105]

In None K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Compression
(stress–

relaxation)
mm LE - - - - - - - - - - - 0.90 ± 0.43 No

disease

Jeffrey
et al.
[98]

In None H Femoral
Head

Indentation;
Compression mm LEI

(Hayes) - - - - -

10.3 ± 1.6
(indenter);

64 ± 13
(unconfined

compres-
sion); 14.4

± 3.5
(indenter,
maximum
modulus);
85.1 ± 4.9

(unconfined
compres-

sion,
maximum
modulus)

- - - - - No
disease

Temple
et al.
[93]

In; Co Aging K Femoral
Condyle

Tensile test
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LE - - - - - - - - -

0.1–30.0
(Tensile,

low strain
rate);

0.1–70
(Tensile,

high strain
rate)

No
disease

Keenan
et al.
[110]

In None K Tibial
Plateau

Indentation
(creep) mm B

(Mow) - - - - 0.00–0.05 - - - - - - 0.48–1.58 No
disease

Wong
et al.
[103]

In None K

Femoral
Condyle;

Tibial
Plateau

Shear Test;
Compression

(stress–
relaxation)

mm, µm
(strain) LE - 0.1–0.9 0.01–5.00 - -

0.01–
0.40
(com-
pres-
sive);
0.01–
0.50
(shear)

- - - - - - No
disease
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Table 2. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Deneweth
et al.
[104]

In None K Tibial
Plateau Compression mm LE - - - - - -

7.0 ± 6.0 *
(not

covered by
menisci);

10.0 ± 8.0 *
(covered by

menisci,
anterior);

22.0 ± 15.0 *
(covered by

menisci,
exterior);

20.0 ± 15.0 *
(covered by

menisci,
posterior)

- - - - - No
disease

Griebel
et al.
[106]

In; Co OA K

Femoral
Condyle;

Tibial
Plateau

Compression mm

Anisotropic
elastic-

ity;
depth
depen-
dent

distri-
bution

of
strain

- - - - - 0.0–
0.12 - - - - - - No

disease

Mäkelä
et al.
[111]

In; Co OA H Femoral
Head

Indentation
(stress–

relaxation)
mm FRPVE - - - - - - - - 0.59 ±

0.48
0.61 ±

0.61
0.23 ±

0.22 - No
disease

Liukkonen
et al.
[96]

In; Me None K Femoral
Condyle

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI
(Hayes) - - - - - - 0.1–0.4 - - - - - No

disease

Burgin
et al.
[102]

In None H Femoral
Head Compression mm LE -

1.1–3.3
(quasi-
static);

0.5–4.98
(0.1 M

Pa);
40–120

(impact)

- - - - - - - - - - No
disease

Rautiainen
et al.
[95]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LE - - - - - - - - - - - 1.2 ± 0.3 Early
OA
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Table 2. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Rautiainen
et al.
[95]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LE - - - - - - - - - - - 0.2 ± 0.3 Advanced
OA

Sim
et al.
[112]

In; Co OA K

Femoral
Condyle;
Trochlear
Groove

Indentation;
Compression

(stress–
relaxation)

mm FRPVE - - - - - - 0.1–38 * 0.1–2.2 * - No
disease

Afara
et al.
[94]

In None K

Femoral
Condyle;

Tibial
Plateau;

Trochlear
Groove

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LE - - - - - - - - - - - 0.9 ± 0.4
(0.15–2.14)

No
disease

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 1.0–17.0 * - - - - - - - - - 0.4–2.4 * OARSI

grade 0

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 1.5–8.0 * - - - - - - - - - 0.3–1.5 * OARSI

grade 1

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 0.5–9.5 * - - - - - - - - - 0.2–1.3 * OARSI

grade 2

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 1.0–7.5 * - - - - - - - - - 0.3–1.4 * OARSI

grade 3
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Table 2. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 1.0–4.5 * - - - - - - - - - 0.3–1.2 * OARSI

grade 4

Waldstein
et al.
[20]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Indentation
(creep) mm B - 1.0–2.0 * - - - - - - - - - 0.2–1.0 * OARSI

grade 5

Nebelung
et al.
[99]

In None K Femoral
Condyle Compression mm LE - 0.419 ±

0.143 - - - - - - - - - - No
disease

Sim
et al.
[92]

Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 2.0 ± 1.0 * 8.5 ± 3.0

* - 1.2 ± 0.1
* -

Abnormal
carti-
lage

(ICRS
grade >

0)

Sim
et al.
[92]

Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 4.5 ± 1.0 * 13.0 ±

2.0 * - 1.3 ± 0.2
* -

Area
sur-

round-
ing

abnor-
mal
carti-
lage

Sim
et al.
[92]

Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 7.0 ± 1.0 * 18.5 ±

2.0 * - 1.1 ± 0.2
* -

Remaining
normal
articu-

lar
carti-
lage

(ICRS
grade

0)

Sim
et al.
[97]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella

Indentation
(electrome-

chanical
probe)

mm LE - - - 0.1 ± 0.5 * - - - - - - - - ICRS
grade 0

Sim
et al.
[97]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella

Indentation
(electrome-

chanical
probe)

mm LE - - - 1.5 ± 0.6 * - - - - - - - - ICRS
grade 1

Sim
et al.
[97]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella

Indentation
(electrome-

chanical
probe)

mm LE - - - 2.5 ± 0.6 * - - - - - - - - ICRS
grade 2



Materials 2024, 17, 1698 17 of 45

Table 2. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Sim
et al.
[97]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella

Indentation
(electrome-

chanical
probe)

mm LE - - - 3.2 ± 0.5 * - - - - - - - - ICRS
grade 3

Sim
et al.
[97]

Co OA K

Femoral
Condyle;

Tibial
Plateau;
Patella

Indentation
(electrome-

chanical
probe)

mm LE - - - 4.0 * - - - - - - - - ICRS
grade 4

Nebelung
et al.
[100]

In

OA
(but

macro-
scopi-
cally
intact
sam-
ples)

K

Femoral
Condyle;

Tibial
Plateau

Compression mm LE -

0.69 ±
0.40

(range,
0.20–
1.69)

- - - - - - - - - - OA

Ebrahimi
et al.
[89]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 6.44 ± 4.85 56.09 ±

33.22
0.41 ±

0.37
15.42 ±

12.34
0.35 ±

0.28 1.19 ± 0.56 OARSI
0-1

Ebrahimi
et al.
[89]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 0.42 ± 1.34 50.05 ±

28.01
0.07 ±

0.17
18.29 ±

13.89
0.10 ±

0.05 0.42 ± 0.25 OARSI
2-3

Ebrahimi
et al.
[89]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm
LEI

(Hayes);
FR-

PVE
- - - - - - 0.00 ± 0.76 21.68 ±

14.12
0.002 ±

0.07
7.65 ±

6.00
0.05 ±

0.04 0.21 ± 0.15 OARSI
4

Chokhandre
et al.
[107]

In; Me None K

Femoral
Condyle;

Tibial
Plateau;
Patella;

Trochlear
Groove

Tensile, Com-
pression, and

Confined
compression

(stress–
relaxation)

mm
LE

(Strain-
dependent)

- - - - - -

0.1–70.0
(Tensile);
0.1–8.0

(Confined
Compres-

sion);
0.1–6.0 (Un-

confined
Compres-

sion)

- -

0.1–60.0
(Tensile);
0.1–0.7

(Confined
Compres-

sion);
0.1–0.8
(Uncon-

fined
Compres-

sion)

No
disease
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Table 2. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(Mode)
Dimensional

Scale Model Stiffness
(N/mm)

Elastic or
Young’s
Modu-

lus,
E (MPa)

Shear
Modu-

lus
(MPa)

Electromechanical
Quantitative

Parameter
Poisson’s

Ratio Strain
Instantaneous

Elastic
Modulus
E0 , (MPa)

Strain-
Dependent
Instanta-

neous
Elastic
Modu-
lus E0 ,
(MPa)

Initial
Fibril

Network
Modu-

lus,
Ef (MPa)

Strain-
dependent

Fibril
Network

Modu-
lus,

Ef (MPa)

Non-
Fibrillar
Matrix
Modu-

lus,
Em

(MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Condition

Ebrahimi
et al.
[91]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm

LEI
(Hayes);

FR-
PVE;
Dy-

namic

- - - - - - 0.1–12.0 * 0.01–0.9 * 0.15–0.80
* 0.65–2.1 * OARSI

0-1

Ebrahimi
et al.
[91]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm

LEI
(Hayes);

FR-
PVE;
Dy-

namic

- - - - - - 0.1–3.0 * 0.01–0.35
*

0.10–0.20
* 0.20–0.80 * OARSI

2-3

Ebrahimi
et al.
[91]

Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm

LEI
(Hayes);

FR-
PVE;
Dy-

namic

- - - - - - 0.1–2.0 * 0.01–0.10
*

0.01–0.15
* 0.10–0.50 * OARSI

4

Berni
et al.
[90]

Me None K Tibial
Plateau Indentation mm LEI

(Hayes) - - - - - - 2.26–25.43 - - - - - No
disease

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Me = Methodological. Pathology: OA = Osteoarthritis. Joint: H = Hip.
K = Knee. Constitutive model: B = Biphasic. FRPVE = Fibril-reinforced poro-viscoelastic. LE = Linear elastic. LEI = Linear elastic isotropic.
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The changes induced in AC response at the millimetre scale by pathological conditions
were primarily investigated by considering the impact of OA (Table 2). In this regard,
a significant effect of OA has been highlighted in terms of the AC instantaneous modu-
lus [89,91,92]. In more detail, the AC initial and strain-dependent instantaneous modulus
significantly decrease with the tissue degree of degeneration [89,91,92], e.g., by considering
the Mankin [92] and the OARSI score [89,91]. These findings were ascribed mainly to
changes in AC composition and structure, i.e., PG content and collagen orientation, both
correlating with the initial instantaneous modulus [91]. By considering the perspective
of retrieving arthroscopic findings about the AC mechanical response and composition, a
quantitative parameter related to the elastic response and to the streaming potential of the
tissue [112] is able to differentiate the degree of degeneration of AC [97].

The equilibrium response of AC is also strictly dependent on the pathological condition
of the tissue, which significantly decreases with the OARSI score [20,89,91,95], suggesting
that the alterations induced by OA are attributed to the deep relationships existing between
the AC equilibrium modulus and both the structure and composition of the tissue, i.e., the
PG content and collagen orientation angle [89,91].

The detrimental impact of OA is additionally highlighted by considering the pa-
rameters retrieved through the poro-viscoelastic fibril-network reinforced model, which
separately describes the elastic behaviour of the collagen network and of the non-fibrillar
matrix, comprising the tissue. In more detail, the initial fibril network modulus and
non-fibrillar matrix modulus of AC are lower in early and advanced OA, compared to
a non-pathological condition [89,91]. Moreover, significant relationships between such
parameters and the instantaneous modulus of AC were also highlighted [92]. According to
these findings, and also taking into account the heterogeneity of AC, the distribution of
strains within the tissue—assessed using an in situ mechanical test, performed within an
MR device—were demonstrated to be highly depth-dependent, moreover reflecting the
severity of OA [106].

Through the employment of a complex constitutive model, such as the poro-viscoelastic
fibril-network reinforced model, it is possible to compute not only parameters related to the
elastic response of the different phases of AC, but also to the permeability of the tissue [110]
(Table 3).

The permeability of AC is correlated with mechanical and electromechanical param-
eters describing the elastic response of the tissue [112] and is primarily investigated by
studies evaluating the impact of OA [89,91,92,111,112]. In this regard, experimental studies
highlighted that AC’s initial permeability is significantly related to the depth-dependent
PG content, as well as to the collagen orientation angle [91]; furthermore, the coefficient
describing the trend of strain-dependent permeability is correlated with both collagen
orientation angle [91] and collagen content [111]. Being sensitive to both the structure and
the composition of the tissue, it is not surprising that AC permeability is related to OA’s
degree of degeneration [89,91,111].

Aiming to better describe the elastic response of AC to the extremely large de-
formation at which the tissue is subjected, hyperelastic constitutive models have been
employed [113–115] (Table 4). In this regard, neo-Hookean, Yeoh [113,114], Veronda West-
mann [114], and Gent [115] are the models proposed. The neo-Hookean and Yeoh models
assume AC to be an isotropic and incompressible material, in which a strain energy func-
tion determines the relationship between shear modulus, principal strains, and the initial
modulus of the tissue. Concerning the Verona Westmann model, its application assumes
a uniaxial deformation of an isotropic and incompressible material [114]. This model
describes the exponential dependence of stress on stretch by two independent parameters,
i.e., a nonlinearity parameter and the shear modulus at zero strain [116]. The Gent model
proposes a hyperelastic strain energy density function to describe the strain-stiffening
phenomenon of soft materials [117]. Moreover, the Gent model can be further extended to
interpret the molecular arrangement of collagen fibres in soft tissues [118].
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Table 3. Experimental studies investigating the AC poro-viscoelastic properties at the millimetre scale.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(mode)
Dimensional

Scale Model
Instantaneous

Elastic
Modulus E0 ,

(MPa)

Strain-
Dependent

Instanta-
neous
Elastic

Modulus E0 ,
(MPa)

Initial Fibril
Network
Modulus,
Ef (MPa)

Strain-
Dependent

Fibril
Network
Modulus,
Ef (MPa)

Non-
Fibrillar
Matrix

Modulus,
Em (MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Initial
Permeability, k

(m4/N s)

Permeability
Strain-

Dependency
Coefficient, M

Condition

Keenan et al. [110] In None K Tibial
Plateau

Indentation
(creep) mm B (Mow) - - - - - 0.48–1.58

(1.7–5.4) ×
10−15 - No disease

Mäkelä et al. [111] In; Co OA H Femoral
Head

Indentation
(stress–

relaxation)
mm FRPVE - - 0.59 ± 0.48 0.61 ± 0.61 0.23 ± 0.22 -

(3.66 ± 2.86) ×
10−15 17.26 ± 14.64 OA

Sim et al. [112] In; Co OA K

Femoral
Condyle;
Trochlear
Groove

Indentation;
Compression

(stress–
relaxation)

mm FRPVE - - 0.1–38 - 0.1–2.2 -
(0.0001–3) ×

10−12 - OA

Sim et al. [92] Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm LEI (Hayes);
FRPVE 2.0 ± 1.0 * - 8.5 ± 3.0 * - 1.2 ± 0.1 * -

Trend across
different
regions

-

Abnormal
cartilage

(ICRS
grade > 0)

Sim et al. [92] Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm LEI (Hayes);
FRPVE 4.5 ± 1.0 * - 13.0 ± 2.0 * - 1.3 ± 0.2 * -

Trend across
different
regions

-

Area sur-
rounding
abnormal
cartilage

Sim et al. [92] Co OA K

Femoral
Condyle;

Tibial
Plateau

Indentation;
Compression

(stress–
relaxation)

mm LEI (Hayes);
FRPVE 7.0 ± 1.0 * - 18.5 ± 2.0 * - 1.1 ± 0.2 * -

Trend across
different
regions

-

Remaining
normal

articular
cartilage

(ICRS
grade 0)

Ebrahimi et al. [89] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 6.44 ± 4.85 56.09 ±

33.22 0.41 ± 0.37 15.42 ±
12.34 0.35 ± 0.28 1.19 ± 0.56

(1.19 ± 0.33) ×
10−15 3.36 ± 2.07 OARSI 0-1

Ebrahimi et al. [89] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 0.42 ± 1.34 50.05 ±

28.01 0.07 ± 0.17 18.29 ±
13.89 0.10 ± 0.05 0.42 ± 0.25

(15.94 ± 47.45)
× 10−15 4.19 ± 3.78 OARSI 2-3

Ebrahimi et al. [89] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 0.00 ± 0.76 21.68 ±

14.12 0.002 ± 0.07 7.65 ± 6.00 0.05 ± 0.04 0.21 ± 0.15
(20.88 ± 20.34)

× 10−15 3.52 ± 4.45 OARSI 4

Ebrahimi et al. [91] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 0.1–12.0 * - 0.01–0.9 * - 0.15–0.80 * 0.65–2.1 *

Only
significant

correlations
with the

components of
the tissue are

reported

Only
significant

correlations
with the

components of
the tissue are

reported

OARSI 0-1
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Table 3. Cont.

Reference
Type

of
Study

Pathology Joint Anatomical
Position

Experimental
Technique

(mode)
Dimensional

Scale Model
Instantaneous

Elastic
Modulus E0 ,

(MPa)

Strain-
Dependent

Instanta-
neous
Elastic

Modulus E0 ,
(MPa)

Initial Fibril
Network
Modulus,
Ef (MPa)

Strain-
Dependent

Fibril
Network
Modulus,
Ef (MPa)

Non-
Fibrillar
Matrix

Modulus,
Em (MPa)

Equilibrium
or

Aggregate
Modulus,
Eeq or HA

(MPa)

Initial
Permeability, k

(m4/N s)

Permeability
Strain-

Dependency
Coefficient, M

Condition

Ebrahimi et al. [91] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 0.1–3.0 * - 0.01–0.35 * - 0.10–0.20 * 0.20–0.80 *

Only
significant

correlations
with the

components of
the tissue are

reported

Only
significant

correlations
with the

components of
the tissue are

reported

OARSI 2-3

Ebrahimi et al. [91] Co OA K Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm LEI (Hayes);
FRPVE 0.1–2.0 * - 0.01–0.10 * - 0.01–0.15 * 0.10–0.50 *

Only
significant

correlations
with the

components of
the tissue are

reported

Only
significant

correlations
with the

components of
the tissue are

reported

OARSI 4

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Pathology: OA = Osteoarthritis. Joint: H = Hip. K = Knee. Constitutive model:
B = Biphasic. FRPVE = Fibril-reinforced poro-ciscoelastic. LEI = Linear elastic isotropic.

Table 4. Experimental studies applying hyperelastic constitutive models to evaluate the AC mechanical behaviour at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique
(Mode)

Dimensional
Scale Model Shear Modulus

(MPa)
C10 Constant

(MPa)
C20 Constant

(MPa)
C1 Veronda
Westmann

(MPa)

C1 Veronda
Westmann

(a.u.)
Condition

Henak et al. [114] In None H
Femoral

Head;
Acetabulum

Compression mm HE (neo-Hookean;
Veronda Westmann) 5.32 ± 2.32 - - 0.34 ± 0.24 6.55 ± 2.07 No disease

Robinson et al. [113] Co OA K
Femoral
Condyle;

Tibial Plateau
Compression mm HE (neo-Hookean;

Yeoh) 6.0 ± 1.6 1.7 ± 0.8 3.9 ± 3.4 - - No disease

Robinson et al. [113] Co OA K
Femoral
Condyle;

Tibial Plateau
Compression mm HE (neo-Hookean;

Yeoh) 4.6 ± 1.8 1.1 ± 0.8 2.0 ± 1.5 - - OA

Khajehsaeid et al. [115] Co OA K Femoral
Condyle Tensile mm HE (Gent)

Only
normalised
values were

reported

- - - - OA

- = Data not reported. Type of study: In = Investigative. Co = Comparative. Pathology: OA = Osteoarthritis. Joint: H = Hip. K = Knee. Constitutive model: HE = Hyperelastic.
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The main mechanical parameter provided by the above-reported models is the shear
modulus [113–115], which can be retrieved by both compressive [113,114] and tensile
tests [115]. Compared to the neo-Hookean model, the Veronda Westman model accurately
predicted peak contact stress, average contact stress, contact area, and contact patterns
developed by testing AC in compression [114]. Regarding how pathologies impair AC
response, shear modulus, and both the Yeoh and Veronda Westmann models, constitutive
parameters are significantly correlated with tissue structural parameters [113] and degen-
eration [113,115], endorsing the employment of such models to quantitatively assess the
impact of OA on AC hyperelastic behaviour.

The time-dependent response of AC has been investigated considering its highly
viscous response, mainly related to both fluid-dependent and -independent phenomena
(Table 5). In this regard, (i) the initial, transient response of AC is attributable to the collagen
network re-arrangement, (ii) the time-dependent creep or stress–relaxation is primarily
related to the interstitial fluid flow, and, finally, (iii) the equilibrium response is dependent
on the properties of the extracellular matrix, ECM. With the purpose of assessing AC’s
viscoelasticity, testing protocols based on creep are employed, therefore replicating the
functioning of the tissue. Creep and creep rate are correlated with AC stiffness [119] and
Young’s modulus [119,120]. In addition, the viscous strain induced within AC is linearly
correlated with the Young modulus of the tissue; furthermore, it is hypothesised that a
variation of such a strain could be linked to the permeability of the tissue [120].

Besides simple parameters [119,120], the viscoelastic behaviour of AC can be modelled
by an isotropic viscoelastic constitutive law, which assumes that the components of the
dilatation and deviatoric part of the stress tensor are decoupled [121]. In addition to the
parameters related to the AC elastic behaviour, the viscosity coefficient of the tissue is
significantly lower in pathological—i.e., affected by OA—than healthy conditions, moreover
highlighting a relationship between such a coefficient and the grade of OA [121].

The assessment of AC plasticity can also provide information improving the knowl-
edge about the degeneration of the tissue. In more detail, the strength of the tissue [93] and
the energy of deformation [102] are the parameters investigated (Table 6).

Besides its relationship with the elastic modulus of the tissue, the energy of deformation—
computed as the area underlying the loading curve, up to maximum compressive deformation—
is correlated with the structural features of AC, i.e., thickness and water and collagen
content [102]. Furthermore, the tensile strength of AC is site- and depth-dependent, high-
light a significant decrease with age [93].

By considering the in vivo scenario at which AC is exposed, investigating the dynamic
response of the tissue can represent a key aspect aiming to better understand not only its
complex behaviour but, moreover, the impact of degenerative pathologies. The dynamic
behaviour of AC was primarily investigated using compressive and indentation techniques,
in particular applying testing protocols with a frequency falling in a range of (0.001 ÷ 88)
Hz [89,91,122], even if the most used value is 1 Hz [94–96,105] (Table 7).

The dynamic modulus is the most often computed parameter, in particular by assum-
ing AC to be an elastic and isotropic material [89,91,94,96]. The dynamic modulus of AC is
correlated with the equilibrium modulus of the tissue [105] and, most importantly, with
clinical findings [94,105]. In more detail, both quantitative MRI parameters—e.g., T1 and
T2 relaxation times [95,105]—and the findings of optical spectroscopy—based on the visible
and near infrared range [94]—are significantly related to the AC dynamic modulus.

The storage and loss modulus are additional parameters used to describe the dynamic
behaviour of AC, in this case assumed to be a viscoelastic material [122]. By considering
this approach, it is possible to elucidate the contribution of elasticity and viscosity to the
comprehensive response of AC. In this regard, the storage modulus is at least double the
loss modulus, suggesting that elasticity leads the response of the tissue. Moreover, the
extent of both moduli depends on the frequency of the compressive stress [89,91,122].
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Table 5. Experimental studies evaluating the time-dependent behaviour of AC at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position

Experimental
Technique

(Mode)

Dimensional
Scale Model Creep (mm) Creep Rate

Viscosity
Coefficient,
η (MPas)

Condition

Barker et al. [120] In None K

Femoral
Condyle;

Tibial
Plateau

Indentation
(stress–

relaxation;
dynamic

mechanical
analysis)

mm VE - 257–1352 * - No disease

Thambyah et al. [119] In None k Tibial
Plateau

Indentation
(creep) mm

VE (model
only for the

elastic
behaviour, i.e.,

LEI, Hayes)

0.05–0.23 - - No disease

Richard et al. [121] Co; Mo OA H Femoral
Head Indentation mm VE - - 218.7 ± 150.6 No disease

Richard et al. [121] Co; Mo OA H Femoral
Head Indentation mm VE - - 36.0 ± 41.4 OA

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Mo = Modelling. Pathology: OA = Osteoarthritis. Joint: H = Hip. K = Knee.
Constitutive model: VE = Viscoelastic.

Table 6. Experimental studies evaluating the plasticity of AC at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model Strength
(MPa)

Energy of
Deformation (mJ) Condition

Temple et al. [93] In; Co Aging K Femoral
Condyle

Tensile test
(stress–relaxation;

dynamic mechanical
analysis)

mm P 0.1–21 *
(Tensile) -

Alteration
induced by

the age

Burgin et al. [102] In None H Femoral Head Compression mm P - 75.5 ± 1.8 No disease

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Joint: H = Hip. K = Knee. Constitutive model: P = Plastic.
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Table 7. Experimental studies evaluating the dynamic behaviour of AC at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model Shear Storage Modulus,
G′ (MPa)

Loss Modulus,
G′′ (MPa)

Dynamic Modulus,
Edyn (MPa) Condition

Kurkijärvi et al. [105] In None K

Femoral
Condyle; Tibial
Plateau; Patella;

Trochlear Groove

Compression
(stress–relaxation) mm D - - 7.83 ± 3.59 No disease

Liukkonen et al. [96] In; Me None K Femoral
Condyle

Indentation
(stress–relaxation; dynamic

mechanical analysis)
mm D - - 0.1–10 * No disease

Rautiainen et al. [95] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - - 6.8 ± 1.7 Early OA

Rautiainen et al. [95] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - - 1.9 ± 2.3 Advanced OA

Afara et al. [94] In None K

Femoral
Condyle; Tibial

Plateau;
Trochlear Groove

Indentation
(stress–relaxation; dynamic

mechanical analysis)
mm D - - 8.0 ± 3.5 (0.80—15.13) No disease

Temple et al. [122] In None H Femoral Head Compression (Dynamic
Mechanical Analysis) mm D A = 2.5 ± 0.6 MPa and

B = 50.1 ± 12.5 MPa
4.8 ± 1.0 (range,

3.0–7.2) - No disease

Ebrahimi et al. [89] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - - 6.87 ± 2.57 OARSI 0-1

Ebrahimi et al. [89] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - - 3.69 ± 2.07 OARSI 2-3

Ebrahimi et al. [89] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - - 1.67 ± 1.08 OARSI 4

Ebrahimi et al. [91] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - -

Only the correlation
coefficients with

structure and
composition of AC are

reported

OARSI 0-1

Ebrahimi et al. [91] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - -

Only the correlation
coefficients with

structure and
composition of AC are

reported

OARSI 2-3

Ebrahimi et al. [91] Co OA K Tibial Plateau
Indentation

(stress–relaxation; dynamic
mechanical analysis)

mm D - -

Only the correlation
coefficients with

structure and
composition of AC are

reported

OARSI 4

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Me = Methodological. Pathology: OA = Osteoarthritis. Joint: H = Hip.
K = Knee. Constitutive model: D = Dynamic.
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Considering the possibility of using the dynamic behaviour as an indicator of AC
structure and composition, the dynamic modulus is significantly correlated with the PG
content and the collagen orientation angle [91]. As a consequence of such sensitivity, the
dynamic modulus is significantly correlated with the OARSI score, i.e., being significantly
reduced by early and advanced OA [89].

The mechanical response of AC was also evaluated at the micrometre scale, but only
by very few studies [16,103,106] (Table 8). The micro-indentation technique is applied to
investigate the viscoelastic and the dynamic behaviour of the tissue [16]. In this regard, the
elastic, storage, and loss moduli of AC decreased significantly with the progression of OA;
moreover, both the storage and loss moduli significantly decreased with age. Interestingly,
a significant negative correlation was found between the AC storage modulus and the SB
elastic modulus, supporting a deep link between such tissues.

Besides standard techniques, volumetric approaches are used to investigate—at a mi-
croscale level—the elastic behaviour of AC and the strain distribution within the tissue [103,106].
By using epi-fluorescence microscopy during bi-axial tests, it was highlighted that femoral AC
is characterised by a higher elastic and shear modulus—and, consequently, it is subjected to
lower axial and shear strain—compared to tibial AC, suggesting regional differences in the
response of the tissue, even at the microscale level [103]. This finding was also highlighted by
the compressive response of AC, investigated using a volumetric approach, employing MRI;
moreover, such an approach allowed the authors to highlight a depth-dependent distribution of
the compressive strain, with an extent that increases significantly through OA progression [106].

By looking at Tables 2–8, the range of mechanical parameters appears wide, even in the
presence of similar, or even identical, mechanical testing modes, dimensional scales, and consti-
tutive models (this finding can be also extended to SB and TB, as can be seen in the following
paragraphs). This evidence can mainly be ascribed to the intrinsic tissue inhomogeneity and
inherent variability of the samples. On the other hand, some of these differences may also arise
from variations in the experimental procedures concerning tissue preparation and conditioning.
Such differences can result in significant variations in the mechanical properties of the tissue,
particularly when considering highly hydrated tissues like AC. Therefore, efforts to standardize
testing protocols wherever possible are essential to carry out reliable studies that can serve as
benchmarks, although the exploration of novel approaches is needed to address emerging research
needs (e.g., strain rate changes, if representing quasi-static vs. dynamic vs. impact loading).

4.4. Subchondral Bone

The SB has received relatively less attention compared to the other OC tissues. This is
likely because the SB forms a thin layer—up to 1.5 mm in thickness [123]—between AC and
TB, preventing the extraction of thick specimens for mechanical assessments. In fact, the
few studies focusing on the human SB in the last century have been performed on samples
ranging from a few tenths of a millimetre to a millimetre in thickness [124–126]. It should
be pointed out that the morphology of the tissue—characterised by a three-dimensional
microchannel network—makes the results very sensitive to the porosity of the tissue, an
aspect that is not taken into account. Therefore, more recent studies investigated the
mechanical properties of the SB using micro- and nano-indentation tests [127].

The Oliver-Pharr method [128]—which assumes an elastic unloading response—was
generally employed to determine the elastic modulus and hardness of the SB, considered to
be a single-phase material [16,129,130]. The available data suggested a moderate correlation
between the elastic modulus of SB and the age of the donor [16] (Table 9). Additionally,
it has been found that the presence of pathologies such as OA alters the features of the
SB, changing its mechanical properties; nevertheless, the relative trend does not appear
to be monotonic. The remodelling process induced by early OA can affect the degree of
mineralisation of the SB [23,131] (Table 9), which probably contributes to the observed
dispersion in the collected data. In late OA, when morphological changes have already
occurred and bone remodelling has slowed down [132], there appears to be an increase in
the SB elastic modulus [16].
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Table 8. Experimental studies evaluating the mechanical behaviour of AC at the micrometre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model
Elastic or Young

Modulus,
E (MPa)

Strain
Shear Storage

Modulus,
G′ (MPa)

Loss Modulus,
G′′ (MPa) Condition

Wong et al. [103] In None K
Femoral

Condyle; Tibial
Plateau

Shear Test; Compression
(stress–relaxation) mm, µm (strain) LE 0.1–0.9

0.01–0.40
(compressive);

0.01–0.50 (shear)
- - No disease

Griebel et al. [106] In; Co OA K
Femoral

Condyle; Tibial
Plateau

Compression mm, µm

Anisotropic
elasticity; depth-

dependent
distribution of

strain

- 0.0–0.12 - - Different grades
of OA severity

Peters et al. [16] Co OA; Aging K
Femoral
Condyle;

Tibial Plateau

Indentation (Dynamic
Mechanical Analysis) µm VE; D 0.04–8.13 - 0.90 ± 0.10 * 0.01–3.23 * ICRS grade 0

Peters et al. [16] Co OA; Aging K
Femoral
Condyle;

Tibial Plateau

Indentation (Dynamic
Mechanical Analysis) µm VE; D 0.04–8.13 - 0.57 ± 0.07 * 0.01–3.23 * ICRS grade 1

Peters et al. [16] Co OA; Aging K
Femoral
Condyle;

Tibial Plateau

Indentation (Dynamic
Mechanical Analysis) µm VE; D 0.04–8.13 - 0.27 ± 0.07 * 0.01–3.23 * ICRS grade 2

Peters et al. [16] Co OA; Aging K
Femoral
Condyle;

Tibial Plateau

Indentation (Dynamic
Mechanical Analysis) µm VE; D 0.04–8.13 - 0.11 ± 0.05 * 0.01–3.23 * ICRS grade 3

Peters et al. [16] Co OA; Aging K
Femoral
Condyle;

Tibial Plateau

Indentation (Dynamic
Mechanical Analysis) µm VE; D 0.04–8.13 - 0.16 ± 0.06 * 0.01–3.23 * ICRS grade 4

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Pathology: OA = Osteoarthritis. Joint: H = Hip. K = Knee. Constitutive model:
D = Dynamic. LE = Linear elastic. VE = Viscoelastic.

Table 9. Experimental studies distinguished evaluating the mechanical behaviour of the SB.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique
(Mode)

Dimensional
Scale Model Apparent Elastic

Modulus (GPa)
Tissue Elastic

Modulus (GPa)
Tissue Hardness

(GPa) Condition

Ferguson et al. [129] Co OA H Femoral Head Indentation µm EP - 16.2–24.0 - No reported cartilage
damage

Ferguson et al. [129] Co OA H Femoral Head Indentation µm EP - 15.7–21.1 0.5–0.9 * Severe cartilage damage

Peters et al. [16] Co OA; Aging K Femoral Condyle;
Tibial Plateau Indentation µm LE - 12.56 ± 0.50 * 0.01–1.27 ICRS grade 0

Peters et al. [16] Co OA; Aging K Femoral Condyle;
Tibial Plateau Indentation µm LE - 13.68 ± 0.60 * 0.01–1.27 ICRS grade 1

Peters et al. [16] Co OA; Aging K Femoral Condyle;
Tibial Plateau Indentation µm LE - 14.05 ± 0.70 * 0.01–1.27 ICRS grade 2

Peters et al. [16] Co OA; Aging K Femoral Condyle;
Tibial Plateau Indentation µm LE - 13.60 ± 1.00 * 0.01–1.27 ICRS grade 3

Peters et al. [16] Co OA; Aging K Femoral Condyle;
Tibial Plateau Indentation µm LE - 17.20 ± 2.00 * 0.01–1.27 ICRS grade 4

Renault et al. [130] In OA K Tibial Plateau Indentation µm LE - 6.0–13.0 * - Light/severe cartilage
damage

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Pathology: OA = Osteoarthritis. Joint: H = Hip. K = Knee. Constitutive model:
EP = Elasto-plastic. LE = Linear elastic.
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4.5. Trabecular Bone

The TB has been extensively investigated across different dimensions, encompassing
mainly the millimetre and micrometre levels. From a structural point of view, it was
clear that the amount of TB per unit of volume—or apparent density—the intrinsic tissue
properties, and the trabecular orientation impact on the apparent mechanical properties
of the TB [133,134]. Therefore, the extraction of specimens with dimension in the range
of (5 ÷ 10) mm must consider the principal structural directions of the tissue architecture,
which can be described using a second rank tensor [135–139].

The TB is commonly modelled as a linear elastic material regardless of the scale,
with a yield point identified using the 0.2% offset method [30]. The theoretical models
describing the trabecular structure assume orthotropic symmetry for apparent elastic
properties [140–142], although a transverse isotropy has also been reported for trabecular
tissue retrieved from specific anatomical regions [143]. Hence, the apparent mechanical
properties of the TB must be associated with the orientation of the structure in the direction
of measurement.

By focusing on the elastic behaviour of TB at the millimetre scale—i.e., considering
the tissue as a homogeneous material—compression is the experimental technique mainly
applied [144–155] (Table 10). Tensile [146] and ultrasound [145] measurements are also
proposed, the latter providing an estimate of the elastic modulus reasonably correlated to
the one assessed using the compressive technique [145].

Regardless of the methods used to evaluate the TB, available data suggest the presence
of correlations between the elastic modulus and the structural features of the tissue, i.e.,
with plate bone volume fraction, pBV/TV [153], axial bone volume fraction, aBV/TV [153],
bone volume fraction, BV/TV [148,150,153], volumetric bone mineral density contributed
by transverse trabeculae, tBMD [154], and only moderately with global density param-
eters [145,156]. Moreover, data reveal that apparent density—often expressed as bone
volume fraction (BV/TV)—and tissue structural anisotropy account for up to 90% of the
variation in experimentally measured elastic properties of healthy TB, modelled as a con-
tinuum [157], endorsing a high variability in tissue response. Differences across sites in
on-axis modulus–density relationships may occur, suggesting that no single, universal
prediction is achievable [146]. Considering TB directional behaviour, differences are de-
termined by comparing directions parallel and non-parallel to the main orientation of the
trabecular structure [144,147]. A great effect of the angle between the testing direction
and the main direction of the bone structure on the compressive behaviour is highlighted,
suggesting that the anisotropy exhibited by the microstructure of the TB reflects on its
elastic response [158,159].

The composition and structure of TB undergo numerous changes with age and patholo-
gies, both leading to a detrimental alteration of the tissue’s mechanical behaviour [160]
(Table 10). No relation between the elastic modulus and the extent of deterioration has
been found in the case of enzymatic and non-enzymatic glycation, despite these processes
heterogeneously modifying the trabecular microarchitecture [151]. Regarding how dis-
eases impact on the elastic response of the TB, type 2 diabetes (T2D) and hip fragility
fracture—the latter adjusted for age, gender, and body mass index, BMI—impair the elastic
modulus of the tissue more than OA and osteoporosis (OP) [152,155]. Patients affected
by T2D have a particularly high risk of fracture, mainly due to the inferior microstruc-
ture and material properties of the bone tissue [161]. In addition, T2D patients exhibited
low-grade inflammation—which negatively affects whole body metabolism and bone
homeostasis [162]—altering bone cells’ activity and function [163].

Regarding the viscous response of the TB at the millimetre scale (Table 11), structural
index and trabecular separation are the markers for evaluating the extent of deformation—
applied using a compressive test with a protocol based on creep—at which the tissue is
subjected [156]. Moreover, the creep rate of the TB depends on the tissue density, i.e., the
higher the density, the lower the creep rate [156].
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The plasticity of the TB at the millimetre scale is mainly investigated using compression
and indentation tests (Table 12). Yield strength, stress and strain, and toughness are the
parameters computed more often [144,148–155,161,164].

Trabecular plate-related parameters—i.e., plate and rod bone volume fraction, pBV/TV
and rBV/TV; trabecular connection densities between plates, P–P Junc.D; average plate
trabecular surface, pTb.S; and average plate trabecular thickness, pTb.Th—are significant
predictors of variations in yield stress [153,154]. In addition, two- and three-dimensional
measurements of TB structural features are strongly correlated with yield stress, endorsing
the possibility of predicting its extent by findings retrieved from both planar and volu-
metric imaging [165]. Interestingly, relationships between apparent bone volume fraction,
appBVF, and yield stress are also highlighted by considering findings retrieved using MRI,
supporting the use of a clinical imaging technique not specific to mineralised tissues to
determine differences in the mechanical response of TB [148]. The toughness of TB is also
determined to be dependent on tissue structure—i.e., bone volume/total volume, BV/TV—
highlighting a negative correlation with the amount of microdamage, e.g., linear microc-
racks [150]. Considering the directional behaviour of the TB, no differences are highlighted
in terms of yield strength—i.e., by comparing directions parallel and non-parallel to the
primary compressive orientation of the trabecular structure [144]—suggesting an isotropic
plasticity of the tissue. Nevertheless, controversial findings—proposing the response of TB
as anisotropic—are retrieved by taking into account the structure of the tissue—through
the fabric tensor model—to compute yield properties and dissipated energy [149], the latter
of which is strictly related to the maximal stress at which the TB is subjected [145].

As highlighted for elasticity, the plastic response of the TB may depend on the patho-
physiological condition of the tissue. In this regard, T2D produces a more significant effect
on the yield stress and toughness of the TB compared to OP and osteopenia [155]. Despite
the fact that the toughness of the TB is not reduced in hip fragility fracture patients, smok-
ing habits worsen the intrinsic trabecular mechanical performance, thus being associated
with a lower stiffness and toughness [152]. Moreover, yield strain and toughness are also
affected by enzymatic and non-enzymatic processes involved in TB turnover [151]. Lastly,
the Brinell hardness of TB—i.e., hardness expressed as indentation depth—is not affected
by hyperhomocysteinemia, which is a risk factor for OP [164]; this finding is probably due
to the characteristics of the population—i.e., age and gender—from which the samples
are retrieved.
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Table 10. Experimental studies and evaluating the elastic behaviour of TB at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model Elastic Modulus (GPa) Hardness (GPa) Condition

Birnbaum et al. [144] In None H Femoral head Compression mm LE 0.051–0.32 - No disease

Pattijn et al. [145] In; Me None H Proximal femur Ultrasonography
(US); Compression mm LE US: 0.052–0.306; UC:

0.021–1.514 - No disease

Morgan et al. [146] In None K Proximal Tibia Tension;
Compression mm LE 0.1–3.0 - No disease

Ohman et al. [147] Me None H Femoral head
Micro-indentation

(Vickers);
Compression (C)

µm; mm LE
2.73 ± 1.06
(aligned);

1.59 ± 0.66
(misaligned)

32.5 ± 2.9
(aligned);
31.1 ± 3.1

(misaligned)

Aligned or misaligned to
the trabecular main

direction

Dall’Ara et al. [161] In None H Femoral head
Micro-indentation

(Vickers);
Compression

mm; µm LE 0.5–4.5 *

32.9 ± 6.6
(wet);

35.1 ± 5.3
(dry);

44.6 ± 6.0
(embedded)

Wet vs. Dry vs.
Embedded

Lancianese et al. [148] In None K Proximal Tibia Compression mm LE Discussed, without presenting
computed values - No disease

Karim et al. [150] In None K Tibial plateau Compression mm LE Discussed, without presenting
computed values - No disease

Schwiedrzik et al. [149] In None H Femoral head
Compression;

Confined
Compression

mm LE 0.319 ± 0.164
(Compression) - No disease

Karim et al. [151] In NEG K Tibial plateau Compression mm LE
Only coefficients of correlation

with structural features are
reported

- No disease

Rodrigues et al. [152] Co OA H Femoral head Compression mm LE 0.437 ± 0.237 - OA
Rodrigues et al. [152] Co HF H Femoral head Compression mm LE 0.324 ± 0.192 - HF

Novitskaya et al. [156] In; Co OP K Proximal tibia Compression mm LE 0.02–0.16 * - OP
Zhou et al. [153] In None K Proximal Tibia Compression mm LE 0.27–1.58 - No disease

Chen et al. [154] In None A Distal tibia Compression mm LE
Only coefficients of correlation

with structural features are
reported

- No disease

Yadav et al. [155] Co T2D H Femoral head Nano-indentation
(NI); Compression µm; mm LE NI: 7 ± 2 *;

C: 0.20 ± 0.10 * 0.25 ± 0.15 * T2D

Yadav et al. [155] Co OP H Femoral head Nano-indentation
(NI); Compression µm; mm LE NI: 9 ± 2 *;

C: 0.35 ± 0.15 * 0.30 ± 0.25 * OP

Yadav et al. [155] Co OPE H Femoral head Nano-indentation
(NI); Compression µm; mm LE NI: 12 ± 2 *;

C: 0.50 ± 0.20 * 0.75 ± 0.35 * OPE

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Me = Methodological. Pathology: HF = Hip fracture. NEG = Non-enzymatic
glycation. OA = Osteoarthritis. OP = Osteoporosis. OPE = Osteopenia. T2D = Type 2 Diabetes. Joint: H = Hip. K = Knee. A = Ankle. Constitutive model: LE = Linear elastic.

Table 11. Experimental studies evaluating the viscous behaviour of TB at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model Final Creep Strain (µε) Steady-State Creep Rate
(sec−1) Condition

Novitskaya et al. [156] In; Co OP K Proximal tibia Compression mm VE 1600–6500 * 0.15–0.38 * OP

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Joint: K = Knee. Pathology: OP = Osteoporosis. Constitutive model:
VE = Viscoelastic.
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Table 12. Experimental studies evaluating the plastic behaviour of TB at the millimetre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique
(Mode)

Dimensional
Scale Model

Depth of
Indentation

at 1 kN
(mm)

Yield strain
(%)

Yield
Stress/Strength

(MPa)

Toughness
(mJ/mm3)

Dissipated
Energy
Density
(MPa)

Absorbed
Energy at 20%

Strain (J)
Condition

Birnbaum et al. [144] In None H Femoral
head Compression mm P - - 2.2–7.6 - - - No disease

Pattijn et al. [145] In; Me None H Proximal
femur

Ultrasonography
(US);

Compression
mm P - - - - - 0.0008–0.1372 No disease

Lancianese et al. [148] In None K Proximal
Tibia Compression mm P - - 0.1–11.0 * - - - No disease

Steines et al. [165] In None H Proximal
femur Compression mm P - - 0.1–18.0 * - - - No disease

Holstein et al. [164] Co HCY H Femoral
head

Indentation
(Brinell) mm P 0.7–1.5 * - - - - - HCY

Holstein et al. [164] Co Control H Femoral
head

Indentation
(Brinell) mm P 0.7–1.6 * - - - - - Control

Karim et al. [150] In None K Tibial
plateau Compression mm P - - - 0.002–0.044 - - No disease

Schwiedrzik et al. [149] In None H Femoral
head

Compression;
Confined

Compression
mm P - 0.0144 ±

0.0022 - - 5.668 ±
4.416 - No disease

Karim et al. [151] In NEG K Tibial
plateau Compression mm P -

Only
coefficients

of
correlation

with
structural

features are
reported

- 0.001–
0.067.5 - - No disease

Rodrigues et al. [152] Co OA H Femoral
head Compression mm P - - 8.7 ± 4.8 0.19 ± 0.18 - - OA

Rodrigues et al. [152] Co HF H Femoral
head Compression mm P - - 6.8 ± 4.1 0.13 ± 0.11 - - HF

Zhou et al. [152] In None K Proximal
Tibia Compression mm P - 0.52–0.83 1.12–8.92 - - - No disease

Chen et al. [154] In None A Distal tibia Compression mm P - -

Only
coefficients of

correlation
with structural

features are
reported

- - - No disease

Yadav et al. [155] Co T2D H Femoral
head

Nano-
indentation (NI);

Compression
µm; mm P - - 3.5 ± 1.5 * 0.065 ±

0.010 * - - T2D

Yadav et al. [155] Co OP H Femoral
head

Nano-
indentation (NI);

Compression
µm; mm P - - 5.0 ± 2.5 * 0.115 ±

0.010 * - - OP

Yadav et al. [155] Co OPE H Femoral
head

Nano-
indentation (NI);

Compression
µm; mm P - - 6.5 ± 2.0 * 0.185 ±

0.020 * - - OPE

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Me = Methodological. Pathology: HCY = Increased serum homocysteine.
HF = Hip fracture. NEG = Non-enzymatic glycation. OA = Osteoarthritis. OP = Osteoporosis. OPE = Osteopenia. T2D = Type 2 Diabetes. Joint: H = Hip. K = Knee. A = Ankle.
Constitutive model: P = Plastic.
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The response of the TB is also investigated at the micrometre and sub-micrometre
scale [16,147,155,161,166,167] (Table 13). In this regard, experimental approaches based
on indentation, i.e., micro- and nano-indentation, propose the Oliver-Pharr [128] or the
Vickers method to determine the elastic modulus [16,155] and hardness [16,147,161] of
the tissue. Although the degree of alignment to the trabecular main direction does not
significantly affect the hardness at the micrometre scale [147], the preparation of TB tissue
strongly modifies the extent of such a parameter [161].

Other approaches investigating the mechanical response of the TB at the microscale
employ Digital Image Correlation (DIC)—combined with macroscopic compressive [166]
and tensile [167] tests—to determine the distribution of both the displacement and elastic
modulus. A modified version of Wagner’s relationship—whose original version relates
calcium content and the bone elastic modulus—was experimentally verified by employing
compression and DIC, which inform a finite element model, predicting the response of
the tissue [166]. In this regard, a higher accuracy of the elastic modulus prediction was
achieved by using a modified Wagner’s relationship, i.e., relating voxel elastic modulus,
microCT-derived hydroxyapatite density, bone organics density, and the organics volume
fraction [166]. The response of the TB at the sub-micrometre scale can also be described
using the staggered model—suggesting an arrangement of the mineral particles in agree-
ment with the distribution of gaps in the collagen fibril. By applying such a model, it is
possible to highlight the nonlinear dependence of the stress–strain of single trabeculae to
the applied load, thus better describing the initial portion of the stress–strain curve once
the tissue is subjected to monotonic loads [167].

By considering how the physiopathological condition impairs the tissue response at
the micro- and sub-micrometre scale, aging and OA seem to have no significant effect on
the TB elastic modulus [16]. Instead regarding hardness, its extent is significantly modified
by the pathologies that alter bone metabolism and structure, i.e., hardness decreases more
for patients with T2D and OP than with osteopenia, probably due to a higher decrease
in trabecular thickness, Tb.Th; trabecular number, Tb. N; and structural model index,
SMI [155].

4.6. Final Considerations on OC Tissues

Previous sections highlighted the importance of the biomechanical characterisations
of the specific OC tissues for deepening the knowledge of relevant physiopathological
conditions, as emerged from many of the reviewed studies on the topic. Therefore, ad-
vancing those characterisations has clear clinical implications in terms of diagnostic and
treatment (e.g., regenerative medicine) potential. In this regard, this systematic review
identified the main gap, i.e., no experimental studies tested the functional response of the
human OC unit as a whole system. Indeed, this represent a major limitation, in particular
when considering the interplay between the OC tissues. Therefore, future research should
focus on the development of testing protocols able to stress the whole OC unit and, in the
meantime, to investigate and to model the response of its constitutive tissues. It needs a
multi-disciplinary approach, envisaging complementary techniques, such as imaging that
could bring us closer to in vivo applications. The next paragraph summarizes the tech-
niques currently employed to integrate the insight retrieved from the mechanical testing of
individual OC tissues and, moreover, how they can be applied to the whole OC unit (for
details about the techniques—e.g., advantages, limitations, suitability for different research
or clinical scenarios, illustrative tables/figures, etc.—refer to the studies reported in the
following section).
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Table 13. Experimental studies distinguished evaluating the mechanical behaviour of the TB at the micrometre scale.

Reference Type of
Study Pathology Joint Anatomical

Position
Experimental

Technique (Mode)
Dimensional

Scale Model Elastic or Tangent
Modulus (GPa) Hardness (GPa) Condition

Dall’Ara et al. [161] In None H Femoral head Micro-indentation
(Vickers) µm EP -

32.9 ± 6.6
(wet);

35.1 ± 5.3
(dry);

44.6 ± 6.0
(embedded)

No disease

Ohman et al. [147] Me None H Femoral head
Micro-indentation

(Vickers);
Compression

µm; mm EP 2.73 ± 1.06 (aligned);
1.59 ± 0.66 (misaligned)

32.5 ± 2.9
(aligned);
31.1 ± 3.1

(misaligned)
No disease

Marinozzi et al. [167] In None H Femoral head Microtensile µm

Response of the trabecular
bone at the nanoscale, by

considering the tissue as a
composite

0.8–3.2 * - No disease

Cyganik et al. [166] In DHD; HD; FHN H Femoral head
FE coupled with
compression on
cubic samples

µm

Young’s modulus
distributions assigned to the

finite element models
following modified Wagner

et al.’s (Young’s modulus
calcium content)

relationship

Distribution and error
made by estimating the

elastic modulus
through Wagner’s law

- No disease

Peters et al. [16] Co OA; Aging K Femoral condyle;
Tibial plate Nano-indentation nm; µm EP 12.33 ± 0.50 * 0.11–1.05 ICRS grade 0

Peters et al. [16] Co OA; Aging K Femoral condyle;
Tibial plate Nano-indentation nm; µm EP 12.57 ± 0.60 * 0.11–1.05 ICRS grade 0

Peters et al. [16] Co OA; Aging K Femoral condyle;
Tibial plate Nano-indentation nm; µm EP 12.01 ± 0.70 * 0.11–1.05 ICRS grade 0

Peters et al. [16] Co OA; Aging K Femoral condyle;
Tibial plate Nano-indentation nm; µm EP 12.94 ± 0.80 * 0.11–1.05 ICRS grade 0

Peters et al. [16] Co OA; Aging K Femoral condyle;
Tibial plate Nano-indentation nm; µm EP 12.07 ± 1.00 * 0.11–1.05 ICRS grade 0

Yadav et al. [155] Co T2D H Femoral head Nano-indentation
(NI); Compression µm; mm EP NI: 7 ± 2 *;

C: 0.20 ± 0.10 * 0.25 ± 0.15 * T2D

Yadav et al. [155] Co OP H Femoral head Nano-indentation
(NI); Compression µm; mm EP NI: 9 ± 2 *;

C: 0.35 ± 0.15 * 0.30 ± 0.25 * OP

Yadav et al. [155] Co OPE H Femoral head Nano-indentation
(NI); Compression µm; mm EP NI: 12 ± 2 *;

C: 0.50 ± 0.20 * 0.75 ± 0.35 * OPE

* = Data derived from graph. - = Data not reported. Type of study: In = Investigative. Co = Comparative. Me = Methodological. Pathology: DHD = Degenerative hip disease.
FHN = Femoral head necrosis. HD = Hip dysplasia. OA = Osteoarthritis. OP = Osteoporosis. OPE = Osteopenia. T2D = Type 2 Diabetes. Joint: H = Hip. K = Knee. Constitutive model:
EP = Elasto-plastic.



Materials 2024, 17, 1698 33 of 45

5. Complementary Approaches to Investigate the OC Unit’s Biomechanics

To properly elucidate the biomechanics of challenging tissues, such as those compris-
ing the OC unit, mechanical assessments must be supported using other methods. Despite
the present review basing its ratings on mechanical experiments, it is important to highlight,
in brief, the main approaches investigating tissue composition and structure reported by
the studies investigated here. Indeed, to complement the mechanical information with that
about structure/composition is fundamental to explain tissue function.

Regarding AC, biochemical assessments and histology still represent the gold standard
in evaluating not only the main features of the tissue, but also the efficacy of treatments [168].
Biochemical analyses focus on tissue composition, e.g., of synovial fluid to investigate the
inflammatory environment of a joint, while histology focuses on tissue/cellular structure
and morphology, usually by optical inspection of tissue slices. Image-based techniques
have emerged as accurate and reliable methods to investigate AC. Optical approaches—i.e.,
stereo, polarised light, and scanning electron microscopy—allowed us to evaluate the
presence of damage on the articular surfaces [98,169], together with collagen orientation
angle and content [111]. The main drawback of these techniques is that they are strictly ex
vivo, being performed on biopsies or resected tissues.

Considering both ex vivo assessments and clinical applications, X-ray imaging has
been used—thanks to advances in contrast-enhanced approaches—to detect chondral le-
sions and to evaluate the severity of AC degeneration [170]. MRI permit to assess AC home-
ostasis, both for preclinical and clinical applications [171]. Delayed gadolinium-enhanced
MRI (dGEMRIC), T2, and T1rho are the main sequences allowing to quantitatively evaluate
AC, relating the extent of the signal to the tissue composition. dGEMRIC sequences permit
an indirect measure of AC GAG content, while T2 and T1rho signals are directly related to
free water, indirectly to collagen content and orientation, and inversely to PG/GAG content,
respectively [101,172–174]. Such sequences represent a powerful tool not only to investigate
AC composition, but also to detect the onset of degenerative pathologies, like OA. However,
the insights that can be retrieved through their analysis strongly rely on the resolution
used to obtain the three-dimensional information. Consequently, care must be taken in
comparing the findings of different studies and, therefore, efforts should be made in order
to define standard acquisition protocols. Finally, Fourier transform infrared [95,175] and
Raman spectroscopy [176] showed a great capability in investigating changes in collagen,
PG, and water content, as well as mineral distribution within AC.

Concerning the mineralised tissues of the OC unit—i.e., SB and TB—X-ray imaging
plays a key role in evaluating their structure and composition. Quantitative experimental,
preclinical, and clinical computed tomography techniques are employed. These techniques
permit to measure the bone mineral density and, when the isotropic spatial resolution is
better than 100 microns with the highest accuracy being achieved with the resolution of
the order of one micron (Synchrotron imaging), parameters related to tissue structure—i.e.,
bone volume fraction (BV/TV), bone surface area to total volume ratio (BS/TV), trabecular
thickness (Tb.Th), trabecular separation (Tb.Sp), trabecular number (Tb.N), and structure
model index (SMI) [177–180]. Significant differences have been found in these parameters
between the bone tissue of different anatomical regions [181] and physiopathological
conditions [182,183].

Correlating tissues’ structure and composition to their mechanical response is crucial
to comprehensively assess the biomechanics of the OC unit, specifically considering how
degeneration and treatment affect the homeostasis of such a complex unit. From this
perspective, image-based techniques such as Digital Image Correlation (DIC) and Digital
Volume Correlation (DVC) can collect comprehensive information related to OC tissues’
biomechanics, by evaluating how the tissues’ structure responds to external loads [184–189].
For both techniques, the resolution of the displacement map and, therefore, the ability to
account for tissue heterogeneity, depends on the imaging resolution and the subset/sub-
volume size [187]. With particular reference to DVC, exhaustive measurement of the
inner deformation induced within tissues are reported for mineralised tissues [188,190,191]
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and, more recently, extended to AC and its junction with bone tissue [4,184,189,192,193].
Concerning the assessment of AC using X-ray-based DVC, two main approaches are
currently used. The first approach mainly employs Phase Contrast, while the second
employs Synchrotron imaging; both these approach have been shown to be suitable for
detecting the microstructural features of AC [4,189]. Nevertheless, the main drawback of
the Phase Contrast approach is the exposure of AC to repeated and prolonged irradiation,
leading to the possible degradation of the tissue [187,194]. The second approach entails
the staining of soft tissues via radiopaque contrast agents, thus increasing the contrast in
the image and resolving their main features, e.g., the local arrangement of chondrocyte
lacunae [184,192]. However, exposing AC to contrast agents could present two main
limitations [195], as follows: (i) the possible alteration of tissue morphology and mechanical
response and (ii) the enhancement reached by the penetration of a contrast agent could not
induce the high-contrast three-dimensional variation of grayscale values required by DVC
algorithms, reducing—or even impairing—the potential of DVC techniques. According to
this evidence, and with the perspective of applying DVC to assess the field of displacements
and strains within the OC unit, the use of contrast agents and specific imaging solutions
must be thoroughly evaluated.

The most futuristic, intriguing challenge can be represented by developing clinical
imaging in such a way to apply DVC to the OC unit as physiologically loaded and, therefore,
for investigating its mechanical performance in vivo. In this way, the diagnostic potential
would strongly increase, i.e., revealing the impact of pathologies on articular tissues during
their functioning.

6. Conclusions and Future Perspectives

This review is mainly focused on the mechanical behaviour of OC tissues, with the
aim of highlighting the main achievements retrieved from the relative literature. Different
models have been proposed for the description of the mechanical behaviour of the OC
tissues. Among them, the poro-viscoelastic fibril-network-reinforced constitutive model
has become common for describing AC, while the models describing the mechanical
behaviour of mineralised tissues are usually simpler (i.e., linear elastic, elasto-plastic). Most
advanced studies have tested and modelled multiple tissues of the same OC unit, but
individually rather than through integrated approaches. This approach allowed an in-
depth characterisation of the investigated tissue, especially of AC and TB, in well-controlled
experimental conditions. It also allowed the validation of different models proposed to
describe the mechanical behaviour of OC tissues. Additionally, the available experimental
techniques that can achieve submicron resolution, combined with the current computing
power technology, already make the development of multiscale models of the individual
tissue that predict the mechanical environment of cells possible.

However, the OC unit is a multilayered structure composed of different tissues, each
one influencing the response of the others and contributing to the overall mechanical
response. Therefore, the validation of multiscale models of such a multilayer structure
requires accurate experimental data describing the comprehensive mechanical behaviour
of the OC unit. The resolution achievable with optical techniques is crucial to provide
accurate information on the physiological volumetric deformation occurring within the OC
unit and to detect small-scale changes due to pathological status that alter the mechanical
environment of the cells.

Although this approach is still challenging and requires a multidisciplinary approach,
involving mechanical, biochemical, computational, and imaging techniques, it could pro-
vide insights into how the mechanical environment regulates cell response and triggers
signalling cascades, driving the development of scaffolds mimicking the mechanical re-
sponse of the OC unit to external loads.
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Appendix A

Appendix A.1. Impact of Osteoarthritis

Osteoarthritis is the main pathology impairing human joints of the lower limbs—its
ever-growing prevalence and incidence represents a major healthcare issue, which involves
a significant part of the overall population, i.e., more than 500 million people world-
wide [197,198]. Although the main factor related to the insurgency of OA is represented by
the age of the subject, the Global Burden of Disease highlighted an annual global increase
in such a pathology of about 9%, starting from the 28 years of age, therefore suggesting the
important contribution of occupational and traumatic factors in the onset of the pathology
in the young and adult populations [199,200]. In addition, approximately 1–2.5% of the
national gross domestic product is attributed to the medical costs of OA [197], thus high-
lighting the significant social and economic impact of joint pathologies and the consequent
needs of improving the clinical approaches in response to their onset and progression.

Appendix A.2. Search Strategies

Table A1. Search terms used in the PubMed, Scopus, and Web of Science databases.

Database Search Items

PubMed

(“in vitro” [Title/Abstract] OR “in vivo” [Title/Abstract] OR “cadaver*” [Title/Abstract] OR “ex vivo”
[Title/Abstract] OR “experiment*” [Title/Abstract] OR “post mortem*” [Title/Abstract]) AND (“Human*”
[Title/Abstract]) AND (“Hip” [Title/Abstract] OR “Femor*” [Title/Abstract] OR “Femur*” [Title/Abstract] OR
“Knee” [Title/Abstract] OR “Tibia*” [Title/Abstract] OR “Patella*” [Title/Abstract] OR “Ankle” [Title/Abstract]
OR “Fibula*” [Title/Abstract] OR “Talus” [Title/Abstract] OR “Talar*” [Title/Abstract]) AND (“Cartilage”
[Title/Abstract] OR “Subchondral bone” [Title/Abstract] OR “Subchondral tissue” [Title/Abstract] OR
“Trabecular bone” [Title/Abstract] OR “Trabecular tissue” [Title/Abstract] OR “Cancellous bone”
[Title/Abstract] OR “Cancellous tissue” [Title/Abstract] OR “spongy tissue” [Title/Abstract] OR “spongy bone”
[Title/Abstract] OR “Mineralized Cartilage” [Title/Abstract] OR “Calcified Cartilage” [Title/Abstract] OR
“Osteochondral” [Title/Abstract]) AND (“Mechanic*” [Title/Abstract] OR “Behav*” [Title/Abstract] OR
“Response” [Title/Abstract] OR “Load*” [Title/Abstract]) AND (English[Filter]) AND (2000:2022[pdat]))

https://www.mdpi.com/article/10.3390/ma17071698/s1
https://www.mdpi.com/article/10.3390/ma17071698/s1
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Table A1. Cont.

Database Search Items

Scopus

(TITLE-ABS-KEY (in vitro) OR TITLE-ABS-KEY (in vivo) OR TITLE-ABS-KEY (cadaver*) OR TITLE-ABS-KEY
(ex vivo) OR TITLE-ABS-KEY (experiment*) OR TITLE-ABS-KEY (post mortem)) AND (TITLE-ABS-KEY
(Human)) AND (TITLE-ABS-KEY (Hip) OR TITLE-ABS-KEY (Femor*) OR TITLE-ABS-KEY (Femur*) OR
TITLE-ABS-KEY (Knee) OR TITLE-ABS-KEY (Tibia*) OR TITLE-ABS-KEY (Patella*) OR TITLE-ABS-KEY
(Ankle) OR TITLE-ABS-KEY (Fibula*) OR TITLE-ABS-KEY (Talus) OR TITLE-ABS-KEY (Talar*)) AND
(TITLE-ABS-KEY (Cartilage) OR TITLE-ABS-KEY (Subchondral bone) OR TITLE-ABS-KEY (Subchondral tissue)
OR TITLE-ABS-KEY (Trabecular bone) OR TITLE-ABS-KEY (Trabecular tissue) OR TITLE-ABS-KEY (Cancellous
bone) OR TITLE-ABS-KEY (Cancellous tissue) OR TITLE-ABS-KEY (spongy tissue) OR TITLE-ABS-KEY
(spongy bone) OR TITLE-ABS-KEY (Miner* Cartilage) OR TITLE-ABS-KEY (Calc* Cartilage) OR
TITLE-ABS-KEY (Osteochondral)) AND (TITLE-ABS-KEY (Mechanic*) OR TITLE-ABS-KEY (Behav*) OR
TITLE-ABS-KEY (Response) OR TITLE-ABS-KEY (Load*)) AND (LIMIT-TO (DOCTYPE, “ar”)) AND (LIMIT-TO
(LANGUAGE, “English”)) AND (LIMIT-TO (PUBYEAR, 2022) OR LIMIT-TO (PUBYEAR, 2021) OR LIMIT-TO
(PUBYEAR, 2020) OR LIMIT-TO (PUBYEAR, 2019) OR LIMIT-TO (PUBYEAR, 2018) OR LIMIT-TO (PUBYEAR,
2017) OR LIMIT-TO (PUBYEAR, 2016) OR LIMIT-TO (PUBYEAR, 2015) OR LIMIT-TO (PUBYEAR, 2014) OR
LIMIT-TO (PUBYEAR, 2013) OR LIMIT-TO (PUBYEAR, 2012) OR LIMIT-TO (PUBYEAR, 2011) OR LIMIT-TO
(PUBYEAR, 2010) OR LIMIT-TO (PUBYEAR, 2009) OR LIMIT-TO (PUBYEAR, 2008) OR LIMIT-TO (PUBYEAR,
2007) OR LIMIT-TO (PUBYEAR, 2006) OR LIMIT-TO (PUBYEAR, 2005) OR LIMIT-TO (PUBYEAR, 2004) OR
LIMIT-TO (PUBYEAR, 2003) OR LIMIT-TO (PUBYEAR, 2002) OR LIMIT-TO (PUBYEAR, 2001) OR LIMIT-TO
(PUBYEAR, 2000))

Web of Science

(TS = in vitro OR TS = in vivo OR TS = cadaver* OR TS = ex vivo OR TS = experiment* OR TS = post mortem)
AND (TS = Human) AND (TS = Hip OR TS = Femor* OR TS = Femur* OR TS = Knee OR TS = Tibia* OR
TS = Patella* OR TS = Ankle OR TS = Fibula* OR TS = Talus OR TS = Talar*) AND (TS = Cartilage OR
TS = Subchondral bone OR TS = Subchondral tissue OR TS = Trabecular bone OR TS = Trabecular tissue OR
TS = Cancellous bone OR TS = Cancellous tissue OR TS = spongy tissue OR TS = spongy bone OR
TS = Mineralized Cartilage OR TS = Calcified Cartilage OR TS = Osteochondral) AND (TS = Mechanic* OR
TS = Behav* OR TS = Response OR TS = Load*) AND Article (Document Types) AND English
(Languages)—with publication Year up to 2022

Appendix A.3. Aggregate Methodological Quality of the Studies

Aiming to quantitatively evaluate the eligible studies, (i) methodology, (ii) data pro-
cessing, and (iii) constitutive model/s features were scored, as reported in Table A2.

Once the metrics of interest and their relative scores were defined, the BWM was
applied to find the metrics’ global weights [78,201]. In more detail, the following steps
were followed to calculate such weights:

• The best—i.e., most important—and the worst—i.e., least important—metrics were
determined according to the focus of this review; from this perspective, methodology
was defined as the best criterion, while model complexity was defined as the worst.

• Preference of the best metric over the others was determined by using a number
between 1 and 9, where 1 means that a metric is equally important to the best one,
9 means that a metric is extremely less important than the best one, and the other
metrics are scored comparatively [78]. Therefore, 1, 5, and 9 coefficients were assigned
to methodology, data processing, and constitutive models, respectively, based on the
focus of this review and, moreover, in order to span the whole range of variability. Con-
sequently, the best-to-others (BO) vector was built, in which the individual coefficients
indicate the preference of the best metric over the others.

• Preference of the worst metric over the others was determined by using a number
between 1 and 9, where 1 means that a metric is equally important to the worst one, 9
means that a metric is extremely more important than the worst one, and the other
metrics are scored comparatively [78]. Therefore, 9, 5, and 1 coefficients were assigned
to methodology, data processing, and constitutive models, respectively. Consequently,
the worst-to-others (WO) vector was built, in which the individual coefficients indicate
the preference of the metrics over the worst one.
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• The optimal weights of the metrics were defined by minimizing the absolute difference
of a linear problem, considering the previously defined coefficients, i.e., BO and
WO vectors.

Table A2. Features used to quantitatively assess eligible studies.

Features Score Description

Methodology

0 Parameters and criteria of the mechanical experiment are not reported

1 Mechanical testing methods are reported, but not supported or referenced

2 Mechanical testing methods are supported or referenced

Data processing (Methodological and
Modelling studies)

0 No statistical analysis is reported, or only a qualitative one is provided,
e.g., mean and standard deviation

1 Not suitable statistical analysis, e.g., parametric test without normal
distribution of data

2

A suitable statistical analysis is provided, e.g., parametric test after
checking normality of data (for comparative and investigative studies, 2 is
assigned only if power analysis is also reported, otherwise 1 is assigned,
despite a suitable statistical analysis

Constitutive model/s

0 One mechanical parameter is computed by fitting the constitutive model/s
on the experimental data

1 Two mechanical parameters are computed by fitting the constitutive
model/s on the experimental data

2 Three, or more, mechanical parameters are computed by fitting the
constitutive model/s on the experimental data

As an outcome of the minimisation process, the global weights of the metrics were
found to be (i) 0.75 for methodology, (ii) 0.18 for data processing, and (iii) 0.07 for consti-
tutive model/s. The range of variability of the Aggregate Quality score falls within 0—
obtained in the case of score 0 for all the evaluated features, i.e., (methodology = 0 × 0.75)
+ (data processing = 0 × 0.18) + (constitutive model = 0 × 0.07) = 0—and 2—obtained in
the case of score 2 for all the evaluated features, i.e., (methodology = 2 × 0.75) + (data
processing = 2 × 0.18) + (constitutive model = 2 × 0.07) = 2.
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