Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = long fiber reinforced thermoplastics (LFT)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2542 KiB  
Article
From Plant to Polymers: Micro-Processing Sisal Fiber-Reinforced PLA/PHA Bio-LFTs at Laboratory Scale
by Rumeysa Yıldırım, Nursel Karakaya, Bas Liebau, Tim Welten, Beyza Bayram, Mehmet Kodal and Güralp Özkoç
Polymers 2025, 17(12), 1618; https://doi.org/10.3390/polym17121618 - 11 Jun 2025
Viewed by 723
Abstract
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated [...] Read more.
This study explores the development of long fiber-reinforced thermoplastic (LFT) composites based on blends of poly(lactic acid) (PLA) and polyhydroxyalkanoate (PHA), reinforced with sisal fibers. A novel lab-scale LFT line was employed to fabricate the long fiber composites, effectively addressing the challenges associated with dispersing and processing high-aspect-ratio natural fibers. The rheological, mechanical, thermal, and morphological properties of the resulting bio-LFT composites were systematically characterized using FTIR, SEM, rotational rheology, mechanical testing, DSC, and TGA. The results demonstrated generally homogeneous fiber dispersion, although limited interfacial adhesion between the fibers and polymer matrix was observed. Mechanical tests revealed that sisal fiber incorporation significantly enhanced tensile strength and stiffness, while impact toughness decreased. Thermal analyses showed improved crystallinity and thermal stability with increasing PHA content and fiber reinforcement. Overall, this work highlights the potential of natural fibers to create high-performance, sustainable biocomposites and lays a solid foundation for future advancements in developing eco-friendly structural materials. Full article
Show Figures

Graphical abstract

15 pages, 1550 KiB  
Article
Optimization of Injection Molding Process for High-Strength and Lightweight Back Rest of Firefighters Using Carbon Fiber Composites of Long Fiber Thermoplastic with Flame Retardants
by Kyoung-Jae Min, Joon-Hyuk Song, Hyun Tak and Bhum-Keun Song
Materials 2025, 18(5), 1112; https://doi.org/10.3390/ma18051112 - 28 Feb 2025
Viewed by 722
Abstract
This study focuses on reducing the weight of oxygen respirators in firefighters’ personal protective equipment (PPE), which currently accounts for about 56% of the total weight. The heavy PPE, weighing between 20 and 25 kg, restricts movement and can lead to musculoskeletal injuries. [...] Read more.
This study focuses on reducing the weight of oxygen respirators in firefighters’ personal protective equipment (PPE), which currently accounts for about 56% of the total weight. The heavy PPE, weighing between 20 and 25 kg, restricts movement and can lead to musculoskeletal injuries. To address this, the study investigates using a carbon fiber-reinforced composite for the backrest of the oxygen respirator to reduce weight while maintaining strength. The backrest was fabricated using a long-fiber thermoplastic (LFT) composite made with PA66 resin and 30wt.% carbon fiber content. Initially, the injection-molding process conditions were identified to achieve a tensile strength of 85 MPa or higher. Additionally, flame retardants were added to improve fire resistance, with AF-480 at 5 wt.% found to be the best option. Subsequently, optimal injection conditions were set by fabricating the back rest with the composite by applying the Taguchi method to satisfy the required tensile strength. As a result, the composite material achieved a 12.8% weight reduction while maintaining the required strength. This development is expected to significantly improve firefighter safety, leading to more effective firefighting and reduced human and property damage. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

24 pages, 7977 KiB  
Article
Approaching Polycarbonate as an LFT-D Material: Processing and Mechanical Properties
by Christoph Schelleis, Benedikt M. Scheuring, Wilfried V. Liebig, Andrew N. Hrymak and Frank Henning
Polymers 2023, 15(9), 2041; https://doi.org/10.3390/polym15092041 - 25 Apr 2023
Cited by 11 | Viewed by 3406
Abstract
Long-fiber thermoplastic (LFT) materials compounded via the direct LFT (LFT-D) process are very versatile composites in which polymers and continuous reinforcement fiber can be combined in almost any way. Polycarbonate (PC) as an amorphous thermoplastic matrix system reinforced with glass fibers (GFs) is [...] Read more.
Long-fiber thermoplastic (LFT) materials compounded via the direct LFT (LFT-D) process are very versatile composites in which polymers and continuous reinforcement fiber can be combined in almost any way. Polycarbonate (PC) as an amorphous thermoplastic matrix system reinforced with glass fibers (GFs) is a promising addition regarding the current development needs, for example battery enclosures for electromobility. Two approaches to the processing and compression molding of PC GF LFT-D materials with various parameter combinations of screw speed and fiber rovings are presented. The resulting fiber lengths averaged around 0.5 mm for all settings. The tensile, bending, Charpy, and impact properties were characterized and discussed in detail. Special attention to the characteristic charge and flow area formed by compression molding of LFT-D materials, as well as sample orientation was given. The tensile modulus was 10 GPa, while the strength surpassed 125 MPa. The flexural modulus can reach up to 11 GPa, and the flexural strength reached up to 216 MPa. PC GF LFT-D is a viable addition to the LFT-D process, exhibiting good mechanical properties and stable processability. Full article
(This article belongs to the Special Issue Manufacturing of Polymer-Matrix Composites)
Show Figures

Figure 1

13 pages, 2734 KiB  
Article
Influence of Polymer Matrices on the Tensile and Impact Properties of Long Fiber-Reinforced Thermoplastic Composites
by Lijuan Jiang, Yinzhi Zhou, Fengnian Jin and Zhenhua Hou
Polymers 2023, 15(2), 408; https://doi.org/10.3390/polym15020408 - 12 Jan 2023
Cited by 13 | Viewed by 3665
Abstract
To investigate the influence of polymer matrices on the tensile and impact properties of long fiber-reinforced thermoplastic (LFT) composites, composites of long basalt fiber-reinforced thermoplastic were developed in this work. Two types of polyethylene, namely 8008 and 100S, and two types of polyethylene, [...] Read more.
To investigate the influence of polymer matrices on the tensile and impact properties of long fiber-reinforced thermoplastic (LFT) composites, composites of long basalt fiber-reinforced thermoplastic were developed in this work. Two types of polyethylene, namely 8008 and 100S, and two types of polyethylene, namely C4220 and K8303, were chosen as the matrices. The fiber volume fractions were set as 2.8%, 5.9%, 8.1%, and 10.6%. The melt flow index (MFI), crystallinity, tensile properties, impact strength, and fracture morphology of the neat polymers and the corresponding composites were tested. The composites of 8008 showed the highest tensile strength since neat 8008 showed a much higher MFI value and crystallinity. The composites of 8008 and K8303 showed a much higher tensile modulus since the neat thermoplastic showed a higher tensile modulus than the other two composites. The polymer toughness was the factor that determined whether the polymer could be toughened by fibers. Moreover, the interfacial shear strength was calculated and compared with the matrix shear strength, based on which fracture modes of the LFT were predicted. Effective methods were proposed for further improvement of the mechanical properties. The results of this paper were essential for attaining the anticipated properties when designing LFT composites. Full article
(This article belongs to the Special Issue Additive Manufacturing of Fiber-Reinforced Polymer Composites)
Show Figures

Figure 1

11 pages, 4269 KiB  
Article
Development of PA6/GF Long-Fiber-Reinforced Thermoplastic Composites Using Pultrusion and Direct Extrusion Manufacturing Processes
by Sung-Eun Kim, Jun-Geol Ahn, Seungjae Ahn, Do-Hyung Park, Da-Hee Choi, Jae-Chul Lee, Hyun-Ik Yang and Ki-Young Kim
Appl. Sci. 2022, 12(10), 4838; https://doi.org/10.3390/app12104838 - 10 May 2022
Cited by 14 | Viewed by 6088
Abstract
The mechanical properties of polyamide 6 glass fiber (PA6/GF) long-fiber-reinforced thermoplastic (LFT) composites were characterized by studying the process conditions in terms of manufacturing methods (direct extrusion and pultrusion) and material characteristics (void content and fiber volume fraction). The LFT composites prepared through [...] Read more.
The mechanical properties of polyamide 6 glass fiber (PA6/GF) long-fiber-reinforced thermoplastic (LFT) composites were characterized by studying the process conditions in terms of manufacturing methods (direct extrusion and pultrusion) and material characteristics (void content and fiber volume fraction). The LFT composites prepared through the pultrusion process have higher mechanical properties than those prepared via the direct extrusion process. The PA6/GF composite prepared via pultrusion had the tensile and flexural strengths of 233 MPa and 338 MPa, respectively. The impact strength measured using the Izod method was 296 J/m, which is 64% higher than that of the composite fabricated via the direct process. The optical microscope images showed that the glass fiber length of the pultruded composites is longer than the fiber length of the direct composites, leading to higher mechanical properties of the LFT composites prepared through the pultrusion process. Moreover, the interfacial shear strength between the resin and the fiber, measured via single fiber pullout tests, can account for the higher fiber reinforcing efficiency. If the void content of a composite is sufficiently small to not be detrimental to the composites, the mechanical properties are observed to be proportional to the fiber volume fraction of the composites. Full article
(This article belongs to the Special Issue Trends and Prospects in Fibre Composites)
Show Figures

Figure 1

9 pages, 2268 KiB  
Communication
Mechanical Property of Long Glass Fiber Reinforced Polypropylene Composite: From Material to Car Seat Frame and Bumper Beam
by Bing Du, Zhengxuan Li, Huimin Bai, Qian Li, Changqi Zheng, Jingwei Liu, Feng Qiu, Zhenhua Fan, Hanjie Hu and Liming Chen
Polymers 2022, 14(9), 1814; https://doi.org/10.3390/polym14091814 - 29 Apr 2022
Cited by 34 | Viewed by 4473
Abstract
Long Fiber Reinforced Thermoplastic (LFT) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance, and weather resistance, which has found increasing application in automobile industry. It is of importance to understand the relationship between micro [...] Read more.
Long Fiber Reinforced Thermoplastic (LFT) is a lightweight, high-strength, and easy-to-recycle new vehicle composite material, and has good mechanical properties, heat resistance, and weather resistance, which has found increasing application in automobile industry. It is of importance to understand the relationship between micro phase, macro-mechanical properties and the structural performance of automobile components. This article evaluates the performance of LFT from the level of material to automobile components. The mechanical properties of LFT were numerically and theoretically predicted to provide instruction for the next material choice. Two typical structural components, namely, car seat frame and bumper beam, were selected to evaluate the performance of LGF/PP compared with other competing materials in terms of mechanical properties and cost. In the case of the same volume, the seat frame of 40% LECT/PP composite material is lighter and cheaper, which is conducive to energy saving and emission reduction. It was shown that the 40% LECT/PA66 car bumper beam had a higher energy absorption ratio, lighter weight, higher specific energy absorption, and advantageous material cost. LFT is a promising candidate for existing automobile components with its performance fulfilling the requirements. Full article
(This article belongs to the Special Issue Molecular Simulation and Modeling of Polymers)
Show Figures

Figure 1

29 pages, 15906 KiB  
Article
Calibration of Fiber Orientation Simulations for LFT—A New Approach
by Fabian Willems, Philip Reitinger and Christian Bonten
J. Compos. Sci. 2020, 4(4), 163; https://doi.org/10.3390/jcs4040163 - 30 Oct 2020
Cited by 7 | Viewed by 6336
Abstract
Short fiber reinforced thermoplastics (SFT) are extensively used due to their excellent mechanical properties and low processing costs. Long fiber reinforced thermoplastics (LFT) show an even more interesting property profile and are increasingly used for structural parts. However, their processing by injection molding [...] Read more.
Short fiber reinforced thermoplastics (SFT) are extensively used due to their excellent mechanical properties and low processing costs. Long fiber reinforced thermoplastics (LFT) show an even more interesting property profile and are increasingly used for structural parts. However, their processing by injection molding is not as simple as for SFT, and their anisotropic properties resulting from the fiber microstructure (fiber orientation, length, and concentration) pose a challenge with regard to the engineering design process. To reliably predict the structural mechanical properties of fiber reinforced thermoplastics by means of micromechanical models, it is also necessary to reliable predict the fiber microstructure. Therefore, it is crucial to calibrate the underlying prediction models, such as the fiber orientation model, within the process simulation. In general, these models may be adjusted manually, but this is usually ineffective and time-consuming. To overcome this challenge, a new calibration method was developed to automatically calibrate the fiber orientation model parameters of the injection molding simulation by means of optimization methods. This optimization routine is based on experimentally determined fiber orientation distributions and leads to optimized parameters for the fiber orientation prediction model within a few minutes. To better understand the influence of the model parameters, different versions of the fiber orientation model, as well as process and material influences on the resulting fiber orientation distribution, were investigated. Finally, the developed approach to calibrate the fiber orientation model was compared with a classical approach, a direct optimization of the whole process simulation. Thereby, the new optimization approach shows a calculation time reduced by the factor 15 with comparable error variance. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume II)
Show Figures

Graphical abstract

32 pages, 10201 KiB  
Article
Comparative Analysis of the Impact of Additively Manufactured Polymer Tools on the Fiber Configuration of Injection Molded Long-Fiber-Reinforced Thermoplastics
by Lukas Knorr, Robert Setter, Dominik Rietzel, Katrin Wudy and Tim Osswald
J. Compos. Sci. 2020, 4(3), 136; https://doi.org/10.3390/jcs4030136 - 15 Sep 2020
Cited by 2 | Viewed by 4729
Abstract
Additive tooling (AT) utilizes the advantages of rapid tooling development while minimizing geometrical limitations of conventional tool manufacturing such as complex design of cooling channels. This investigation presents a comparative experimental analysis of long-fiber-reinforced thermoplastic parts (LFTs), which are produced through additively manufactured [...] Read more.
Additive tooling (AT) utilizes the advantages of rapid tooling development while minimizing geometrical limitations of conventional tool manufacturing such as complex design of cooling channels. This investigation presents a comparative experimental analysis of long-fiber-reinforced thermoplastic parts (LFTs), which are produced through additively manufactured injection molding polymer tools. After giving a review on the state of the art of AT and LFTs, additive manufacturing (AM) plastic tools are compared to conventionally manufactured steel and aluminum tools toward their qualification for spare part and small series production as well as functional validation. The assessment of the polymer tools focuses on three quality criteria concerning the LFT parts: geometrical accuracy, mechanical properties, and fiber configuration. The analysis of the fiber configuration includes fiber length, fiber concentration, and fiber orientation. The results show that polymer tools are fully capable of manufacturing LFTs with a cycle number within hundreds before showing critical signs of deterioration or tool failure. The produced LFTs moldings provide sufficient quality in geometrical accuracy, mechanical properties, and fiber configuration. Further, specific anomalies of the fiber configuration can be detected for all tool types, which include the occurrence of characteristic zones dependent on the nominal fiber content and melt flow distance. Conclusions toward the improvement of additively manufactured polymer tool life cycles are drawn based on the detected deteriorations and failure modes. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume II)
Show Figures

Figure 1

15 pages, 5717 KiB  
Article
Measuring Fiber Length in the Core and Shell Regions of Injection Molded Long Fiber-Reinforced Thermoplastic Plaques
by Abrahán Bechara Senior and Tim Osswald
J. Compos. Sci. 2020, 4(3), 104; https://doi.org/10.3390/jcs4030104 - 31 Jul 2020
Cited by 8 | Viewed by 3771
Abstract
Long fiber-reinforced thermoplastics are an attractive design option for many industries due to their excellent mechanical properties and processability. Processing of these materials has a significant influence on their microstructure, which controls the properties of the final part. The microstructure is characterized by [...] Read more.
Long fiber-reinforced thermoplastics are an attractive design option for many industries due to their excellent mechanical properties and processability. Processing of these materials has a significant influence on their microstructure, which controls the properties of the final part. The microstructure is characterized by the fibers’ orientation, length, and concentration. Many characterization methods can capture the fiber orientation and concentration changes through the thickness in injection molded parts, but not the changes in fiber length. In this study, a technique for measuring fiber length in the core and shell regions of molded parts was proposed, experimentally verified, and used on injection molded 20 wt.% glass fiber-reinforced polypropylene plaques. The measured fiber length in the core was 50% higher than in the shell region. Comparison with simulation results shows disagreement in the shape of the through-thickness fiber length profile. Stiffness predictions show that the through-thickness changes in fiber length have little impact on the longitudinal and transverse Young’s modulus. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume II)
Show Figures

Figure 1

17 pages, 5981 KiB  
Article
Experimental Validation of a Direct Fiber Model for Orientation Prediction
by Sara Andrea Simon, Abrahán Bechara Senior and Tim Osswald
J. Compos. Sci. 2020, 4(2), 59; https://doi.org/10.3390/jcs4020059 - 25 May 2020
Cited by 10 | Viewed by 3147
Abstract
Predicting the fiber orientation of reinforced molded components is required to improve their performance and safety. Continuum-based models for fiber orientation are computationally very efficient; however, they lack in a linked theory between fiber attrition, fiber–matrix separation and fiber alignment. This work, therefore, [...] Read more.
Predicting the fiber orientation of reinforced molded components is required to improve their performance and safety. Continuum-based models for fiber orientation are computationally very efficient; however, they lack in a linked theory between fiber attrition, fiber–matrix separation and fiber alignment. This work, therefore, employs a particle level simulation which was used to simulate the fiber orientation evolution within a sliding plate rheometer. In the model, each fiber is accounted for and represented as a chain of linked rigid segments. Fibers experience hydrodynamic forces, elastic forces, and interaction forces. To validate this fundamental modeling approach, injection and compression molded reinforced polypropylene samples were subjected to a simple shear flow using a sliding plate rheometer. Microcomputed tomography was used to measure the orientation tensor up to 60 shear strain units. The fully characterized microstructure at zero shear strain was used to reproduce the initial conditions in the particle level simulation. Fibers were placed in a periodic boundary cell, and an idealized simple shear flow field was applied. The model showed a faster orientation evolution at the start of the shearing process. However, agreement with the steady-state aligned orientation for compression molded samples was found. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites, Volume II)
Show Figures

Figure 1

12 pages, 6512 KiB  
Article
Simulative Prediction of Fiber-Matrix Separation in Rib Filling During Compression Molding Using a Direct Fiber Simulation
by Christoph Kuhn, Ian Walter, Olaf Täger and Tim Osswald
J. Compos. Sci. 2018, 2(1), 2; https://doi.org/10.3390/jcs2010002 - 28 Dec 2017
Cited by 21 | Viewed by 4488
Abstract
Compression molding of long fiber reinforced composites offers specific advantages in automotive applications due to the high strength to weight ratio, the comparably low tooling costs and short cycle times. However, the manufacturing process of long fiber composite parts presents a range of [...] Read more.
Compression molding of long fiber reinforced composites offers specific advantages in automotive applications due to the high strength to weight ratio, the comparably low tooling costs and short cycle times. However, the manufacturing process of long fiber composite parts presents a range of challenges. The phenomenon of fiber matrix separation (FMS) is causing severe deviations in fiber content, especially in complex ribbed structures. Currently, there is no commercial software that is capable to accurately predict FMS. This work uses a particle level mechanistic model to study FMS in a rib filling application. The direct fiber simulation (DFS) is uniquely suited to this application due to its ability to model individual fibers and their bending, as well as the interaction amongst fibers that leads to agglomeration. The effects of mold geometry, fiber length, viscosity, and initial fiber orientation are studied. It is shown that fiber length and initial fiber orientation have the most pronounced effects on fiber volume percentage in the ribs, with viscosity and part geometry playing a smaller role. Full article
(This article belongs to the Special Issue Discontinuous Fiber Composites)
Show Figures

Figure 1

Back to TopTop