Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = localized surface phonon-polaritons

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1403 KiB  
Review
Nonlinear Dielectric Metasurfaces for Terahertz Applications
by Forouzan Habibighahfarokhi, Olga Sergaeva, Luca Carletti, Paolo Franceschini, Andrea Tognazzi, Andrea Locatelli, Unai Arregui Leon, Giuseppe Della Valle, Costantino De Angelis and Davide Rocco
Photonics 2025, 12(4), 370; https://doi.org/10.3390/photonics12040370 - 12 Apr 2025
Cited by 1 | Viewed by 1038
Abstract
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 30 THz, represents a prospering area in photonics, with transformative applications in imaging, communications, and material analysis. However, the development of efficient and compact THz sources has long been hampered by [...] Read more.
The terahertz (THz) region of the electromagnetic spectrum, spanning from 0.1 to 30 THz, represents a prospering area in photonics, with transformative applications in imaging, communications, and material analysis. However, the development of efficient and compact THz sources has long been hampered by intrinsic material limitations, inefficient conversion processes, and complex phase-matching requirements. Recent breakthroughs in nonlinear optical mechanisms, resonant metasurface engineering, and advances in the fabrication processes for materials such as lithium niobate (LN) and aluminum gallium arsenide (AlGaAs) have paved the way for innovative THz generation techniques. This review article explores the latest theoretical advances, together with key experimental results and outlines perspectives for future developments. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

14 pages, 3805 KiB  
Article
Significant Substrate Effects on Electromagnetic Scattering by Particles in the Infrared Atmospheric Window
by Feifei Gao, Shangyu Zhang, Wenjie Zhang, Lanxin Ma and Linhua Liu
Photonics 2023, 10(4), 476; https://doi.org/10.3390/photonics10040476 - 21 Apr 2023
Cited by 1 | Viewed by 2194
Abstract
Particle-dispersed coatings emerged as a promising approach to regulate the apparent radiative properties of underlying substrates in various applications, including but not limited to radiative cooling, thermal management, and infrared stealth. However, most research efforts in this field overlooked the dependent scattering mechanisms [...] Read more.
Particle-dispersed coatings emerged as a promising approach to regulate the apparent radiative properties of underlying substrates in various applications, including but not limited to radiative cooling, thermal management, and infrared stealth. However, most research efforts in this field overlooked the dependent scattering mechanisms between the particles and the substrate, which can impact the optical properties of the particles. In this study, we explored the particle-substrate interactions within the atmospheric radiative window of 8–14 µm. Using the T-matrix method, we calculated the scattering and absorption efficiencies of a dielectric/metallic particle situated above a metallic/dielectric substrate, considering the different gap sizes. Near the small gaps (<0.5a with a the sphere radius), we found that the strong local fields induced by the interaction between the induced and image charges largely enhanced the absorption and scattering efficiencies of the particles. With the increasing gap sizes, the absorption and scattering efficiencies presented a significant oscillation with a period of about 4.5a, which was attributed to the interference (standing wave) between the scattered fields from the sphere and the reflected fields from the substrate. Our findings identify a crucial role of the particle–substrate interactions in the infrared properties of particles, which may guide a comprehensive insight on the apparent radiative properties of the particle composite coatings. Full article
(This article belongs to the Section Optical Interaction Science)
Show Figures

Figure 1

23 pages, 4325 KiB  
Review
Surface Wave Enhanced Sensing in the Terahertz Spectral Range: Modalities, Materials, and Perspectives
by Mathieu Poulin, Steven Giannacopoulos and Maksim Skorobogatiy
Sensors 2019, 19(24), 5505; https://doi.org/10.3390/s19245505 - 13 Dec 2019
Cited by 12 | Viewed by 4645
Abstract
The terahertz spectral range (frequencies of 0.1–10 THz) has recently emerged as the next frontier in non-destructive imaging and sensing. Here, we review amplitude-based and phase-based sensing modalities in the context of the surface wave enhanced sensing in the terahertz frequency band. A [...] Read more.
The terahertz spectral range (frequencies of 0.1–10 THz) has recently emerged as the next frontier in non-destructive imaging and sensing. Here, we review amplitude-based and phase-based sensing modalities in the context of the surface wave enhanced sensing in the terahertz frequency band. A variety of surface waves are considered including surface plasmon polaritons on metals, semiconductors, and zero gap materials, surface phonon polaritons on polaritonic materials, Zenneck waves on high-k dielectrics, as well as spoof surface plasmons and spoof Zenneck waves on structured interfaces. Special attention is paid to the trade-off between surface wave localization and sensor sensitivity. Furthermore, a detailed theoretical analysis of the surface wave optical properties as well as the sensitivity of sensors based on such waves is supplemented with many examples related to naturally occurring and artificial materials. We believe our review can be of interest to scientists pursuing research in novel high-performance sensor designs operating at frequencies beyond the visible/IR band. Full article
Show Figures

Figure 1

9 pages, 2540 KiB  
Article
Fano Resonance in Waveguide Coupled Surface Exciton Polaritons: Theory and Application in Biosensor
by Jiaqi Zhu, Shuaiwen Gan, Banxian Ruan, Leiming Wu, Houzhi Cai, Xiaoyu Dai and Yuanjiang Xiang
Sensors 2018, 18(12), 4437; https://doi.org/10.3390/s18124437 - 14 Dec 2018
Cited by 3 | Viewed by 4359
Abstract
Surface exciton polaritons (SEPs) are one of the three major elementary excitations: Phonons, plasmons and excitons. They propagate along the interface of the crystal and dielectric medium. Surface exciton polaritons hold a significant position in the aspect of novel sensor and optical devices. [...] Read more.
Surface exciton polaritons (SEPs) are one of the three major elementary excitations: Phonons, plasmons and excitons. They propagate along the interface of the crystal and dielectric medium. Surface exciton polaritons hold a significant position in the aspect of novel sensor and optical devices. In this article, we have realized a sharp Fano resonance (FR) by coupling the planar waveguide mode (WGM) and SEP mode with Cytop (perfluoro (1-butenyl vinyl ether)) and J-aggregate cyanine dye. After analyzing the coupling mechanism and the localized field enhancement, we then applied our structure to the imaging biosensor. It was shown that the maximum imaging sensitivity of this sensor could be as high as 5858 RIU−1, which is more than three times as much as classical FR based on metal. A biosensor with ultra-high sensitivity, simple manufacturing technique and lower cost with J-aggregate cyanine dye provides us with the most appropriate substitute for the surface plasmon resonance sensors with the noble metals and paves the way for applications in new sensing technology and biological studies. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance Sensing 2019)
Show Figures

Figure 1

Back to TopTop