Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = local autoregressive geographically and temporally weighted regression

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 39229 KB  
Article
Local–Linear Two-Stage Estimation of Local Autoregressive Geographically and Temporally Weighted Regression Model
by Dan Xiang and Zhimin Hong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 276; https://doi.org/10.3390/ijgi14070276 - 16 Jul 2025
Cited by 1 | Viewed by 586
Abstract
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive [...] Read more.
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive geographically and temporally weighted regression (GTWRLAR) model can simultaneously handle spatiotemporal autocorrelations among response variables and the spatiotemporal heterogeneity of regression relationships. The two-stage weighted least squares (2SLS) estimation can effectively reduce computational complexity. However, the weighted least squares estimation is essentially a Nadaraya–Watson kernel-smoothing approach for nonparametric regression models, and it suffers from a boundary effect. For spatiotemporally varying coefficient models, the three-dimensional spatiotemporal coefficients (longitude, latitude, and time) inherently exhibit larger boundaries than one-dimensional intervals. Therefore, the boundary effect of the 2SLS estimation of GTWRLAR will be more serious. A local–linear geographically and temporally weighted 2SLS (GTWRLAR-L) estimation is proposed to correct the boundary effect in both the spatial and temporal dimensions of GTWRLAR and simultaneously improve parameter estimation accuracy. The simulation experiment shows that the GTWRLAR-L method reduces the root mean square error (RMSE) of parameter estimates compared to the standard GTWRLAR approach. Empirical analyses of carbon emissions in China’s Yellow River Basin (2017–2021) show that GTWRLAR-L enhances the adjusted R2 from 0.888 to 0.893. Full article
Show Figures

Figure 1

13 pages, 1687 KB  
Article
Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia
by Kurubaran Ganasegeran, Mohd Fadzly Amar Jamil, Maheshwara Rao Appannan, Alan Swee Hock Ch’ng, Irene Looi and Kalaiarasu M. Peariasamy
Int. J. Environ. Res. Public Health 2022, 19(4), 2082; https://doi.org/10.3390/ijerph19042082 - 13 Feb 2022
Cited by 15 | Viewed by 4114
Abstract
As COVID-19 dispersion occurs at different levels of gradients across geographies, the application of spatiotemporal science via computational methods can provide valuable insights to direct available resources and targeted interventions for transmission control. This ecological-correlation study evaluates the spatial dispersion of COVID-19 and [...] Read more.
As COVID-19 dispersion occurs at different levels of gradients across geographies, the application of spatiotemporal science via computational methods can provide valuable insights to direct available resources and targeted interventions for transmission control. This ecological-correlation study evaluates the spatial dispersion of COVID-19 and its temporal relationships with crucial demographic and socioeconomic determinants in Malaysia, utilizing secondary data sources from public domains. By aggregating 51,476 real-time active COVID-19 case-data between 22 January 2021 and 4 February 2021 to district-level administrative units, the incidence, global and local Moran indexes were calculated. Spatial autoregressive models (SAR) complemented with geographical weighted regression (GWR) analyses were executed to determine potential demographic and socioeconomic indicators for COVID-19 spread in Malaysia. Highest active case counts were based in the Central, Southern and parts of East Malaysia regions of Malaysia. Countrywide global Moran index was 0.431 (p = 0.001), indicated a positive spatial autocorrelation of high standards within districts. The local Moran index identified spatial clusters of the main high–high patterns in the Central and Southern regions, and the main low–low clusters in the East Coast and East Malaysia regions. The GWR model, the best fit model, affirmed that COVID-19 spread in Malaysia was likely to be caused by population density (β coefficient weights = 0.269), followed by average household income per capita (β coefficient weights = 0.254) and GINI coefficient (β coefficient weights = 0.207). The current study concluded that the spread of COVID-19 was concentrated mostly in the Central and Southern regions of Malaysia. Population’s average household income per capita, GINI coefficient and population density were important indicators likely to cause the spread amongst communities. Full article
Show Figures

Figure 1

18 pages, 9748 KB  
Article
Temporal Geospatial Analysis of COVID-19 Pre-Infection Determinants of Risk in South Carolina
by Tianchu Lyu, Nicole Hair, Nicholas Yell, Zhenlong Li, Shan Qiao, Chen Liang and Xiaoming Li
Int. J. Environ. Res. Public Health 2021, 18(18), 9673; https://doi.org/10.3390/ijerph18189673 - 14 Sep 2021
Cited by 7 | Viewed by 3287
Abstract
Disparities and their geospatial patterns exist in morbidity and mortality of COVID-19 patients. When it comes to the infection rate, there is a dearth of research with respect to the disparity structure, its geospatial characteristics, and the pre-infection determinants of risk (PIDRs). This [...] Read more.
Disparities and their geospatial patterns exist in morbidity and mortality of COVID-19 patients. When it comes to the infection rate, there is a dearth of research with respect to the disparity structure, its geospatial characteristics, and the pre-infection determinants of risk (PIDRs). This work aimed to assess the temporal–geospatial associations between PIDRs and COVID-19 infection at the county level in South Carolina. We used the spatial error model (SEM), spatial lag model (SLM), and conditional autoregressive model (CAR) as global models and the geographically weighted regression model (GWR) as a local model. The data were retrieved from multiple sources including USAFacts, U.S. Census Bureau, and the Population Estimates Program. The percentage of males and the unemployed population were positively associated with geodistributions of COVID-19 infection (p values < 0.05) in global models throughout the time. The percentage of the white population and the obesity rate showed divergent spatial correlations at different times of the pandemic. GWR models fit better than global models, suggesting nonstationary correlations between a region and its neighbors. Characterized by temporal–geospatial patterns, disparities in COVID-19 infection rate and their PIDRs are different from the mortality and morbidity of COVID-19 patients. Our findings suggest the importance of prioritizing different populations and developing tailored interventions at different times of the pandemic. Full article
(This article belongs to the Topic Burden of COVID-19 in Different Countries)
Show Figures

Figure 1

Back to TopTop