Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population, Design and Setting
2.2. Data Source and Indicators
2.3. Statistical Analysis
2.4. Conference Presentation
3. Results
3.1. Spatial Autocorrelation of COVID-19 Incidence
3.2. Spatial Relationship between National Indicators and COVID-19 Incidence
3.3. Multiscale Spatial Regression Models of COVID-19 Incidence
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Center for Disease Control. Principles of Epidemiology in Public Health Practice, Third Edition. An Introduction to Applied Epidemiology and Biostatistics. Available online: https://www.cdc.gov/csels/dsepd/ss1978/lesson1/section1.html (accessed on 20 July 2021).
- Waller, L.A. Mapping in Public Health. In Mapping Across Academia; Brunn, S., Dodge, M., Eds.; Springer: Dordrecht, The Netherlands; Springer: New York, NY, USA, 2017. [Google Scholar]
- Gamache, R.; Kharrazi, H.; Weiner, J.P. Public and Population Health Informatics: The Bridging of Big Data to Benefit Communities. Yearb. Med. Inform. 2018, 27, 199–206. [Google Scholar] [PubMed] [Green Version]
- Jia, Q.; Guo, Y.; Wang, G.; Barnes, S.J. Big Data Analytics in the Fight against Major Public Health Incidents (Including COVID-19): A Conceptual Framework. Int. J. Environ. Res. Public Health 2020, 17, 6161. [Google Scholar] [CrossRef]
- Sanyaolu, A.; Okorie, C.; Marinkovic, A.; Haider, N.; Abbasi, A.F.; Jaferi, U.; Prakash, S.; Balendra, V. The Emerging SARS-CoV-2 Variants of Concern. Ther. Adv. Infect. Dis. 2021, 8, 20499361211024372. [Google Scholar] [CrossRef] [PubMed]
- Umair, M.; Ikram, A.; Salman, M.; Khurshid, A.; Alam, M.; Badar, N.; Suleman, R.; Tahir, F.; Sharif, S.; Montgomery, J.; et al. Whole-Genome Sequencing of SARS-CoV-2 Reveals the Detection of G614 Variant in Pakistan. PLoS ONE 2021, 16, e0248371. [Google Scholar] [CrossRef] [PubMed]
- Lavine, J.S.; Bjornstad, O.N.; Antia, R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science 2021, 371, 741–745. [Google Scholar] [CrossRef]
- Aluko, E. Modelling the COVID-19 Epidemic as a Geometric Progression—Application to Nigeria, United Kingdom & Other Select Countries. SSRN Electron. J. 2020. Available online: https://doi.org/10.2139/ssrn.3615857 (accessed on 30 December 2021).
- Sevi, S.; Avina, M.M.; Peloquin-Skulski, G.; Heisbourg, E.; Vegas, P.; Coulombe, M.; Arel-Bundock, V.; Loewen, P.J.; Blais, A. Logarithmic versus Linear Visualizations of COVID-19 Cases Do Not Affect Citizens’ Support for Confinement. Can. J. Polit. Sci. 2020, 53, 385–390. [Google Scholar]
- Alsayed, A.; Sadir, H.; Kamil, R.; Sari, H. Prediction of Epidemic Peak and Infected Cases for COVID-19 Disease in Malaysia, 2020. Int. J. Environ. Res. Public Health 2020, 17, 4076. [Google Scholar] [CrossRef]
- Ganasegeran, K.; Ch’ng, A.S.H.; Looi, I. What Is the Estimated COVID-19 Reproduction Number and the Proportion of the Population That Needs to Be Immunized to Achieve Herd Immunity in Malaysia? A Mathematical Epidemiology Synthesis. COVID 2021, 1, 3. [Google Scholar] [CrossRef]
- Gill, B.S.; Jayaraj, V.J.; Singh, S.; Mohd Ghazali, S.; Cheong, Y.L.; Md Iderus, N.H.; Sundram, B.M.; Aris, T.B.; Mohd Ibrahim, H.; Hong, B.H.; et al. Modelling the Effectiveness of Epidemic Control Measures in Preventing the Transmission of COVID-19 in Malaysia. Int. J. Environ. Res. Public Health 2020, 17, 5509. [Google Scholar] [CrossRef]
- Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M. Early Dynamics of Transmission and Control of COVID-19: A Mathematical Modelling Study. Lancet Infect. Dis. 2020, 20, 553–558. [Google Scholar] [CrossRef] [Green Version]
- Sim, B.L.H.; Chidambaram, S.K.; Wong, X.C.; Pathmanathan, M.D.; Peariasamy, K.M.; Hor, C.P.; Chua, H.J.; Goh, P.P. Clinical Characteristics and Risk Factors for Severe COVID-19 Infections in Malaysia: A Nationwide Observational Study. Lancet Reg. Health West. Pac. 2020, 4, 100055. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Chen, J.; Viboud, C. Early Epidemiological Analysis of the Coronavirus Disease 2019 Outbreak Based on Crowdsourced Data: A Population-Level Observational Study. Lancet Digit. Health 2020, 2, e201–e208. [Google Scholar] [CrossRef]
- Giuliani, D.; Dickson, M.M.; Espa, G.; Santi, F. Modelling and Predicting the Spatio-Temporal Spread of COVID-19 in Italy. BMC Infect. Dis. 2020, 20, 700. [Google Scholar] [CrossRef] [PubMed]
- Andrade, L.; Soares Gomes, D.; Goes, M.; Souza, M.; Teixeira, D.; Nunes Ribeiro, C.; Alves, A.; Araujo, K.; Santos, A. Surveillance of the First Cases of COVID-19 in Sergipe using a Prospective Spatiotemporal Analysis: The Spatial Dispersion and Its Public Health Implications. Rev. Soc. Bras. Med. Trop 2020, 53, e20200287. [Google Scholar] [CrossRef]
- Castro, M.C.; Kim, S.; Barberia, L.; Ribeiro, A.F.; Gurzenda, S.; Ribeiro, K.B.; Abbott, E.; Blossom, J.; Rache, B.; Singer, B.H. Spatiotemporal Pattern of COVID-19 Spread in Brazil. Science 2021, 372, 821–826. [Google Scholar] [CrossRef] [PubMed]
- Elson, R.; Davies, T.M.; Lake, I.R.; Vivancos, R.; Blomquist, P.B.; Charlett, A.; Dabrera, G. The Spatio-Temporal Distribution of COVID-19 Infection in England between January and June 2020. Epidemiol. Infect. 2021, 149, e73. [Google Scholar] [CrossRef]
- Fortaleza, C.M.C.B.; Guimaraes, R.B.; de Almeida, G.B.; Pronunciate, M.; Ferreira, C.P. Taking the Inner Route: Spatial and Demographic Factors Affecting Vulnerability to COVID-19 Among 604 Cities from Inner Sao Paulo State, Brazil. Epidemiol. Infect. 2020, 148, e118. [Google Scholar] [CrossRef]
- Gayawan, E.; Awe, O.O.; Oseni, B.M.; Uzochukwu, I.C.; Adekunle, A.; Samuel, G.; Eisen, D.P.; Adegboye, O.A. The Spatio-Temporal Epidemic Dynamics of COVID-19 Outbreak in Africa. Epidemiol. Infect. 2020, 148, e212. [Google Scholar] [CrossRef]
- Ngwira, A.; Kumwenda, F.; Munthali, E.C.S.; Nkolokosa, D. Spatial Temporal Distribution of COVID-19 Risk During the Early Phase of the Pandemic in Malawi. Peer J. 2021, 9, e11003. [Google Scholar] [CrossRef]
- Spassiani, I.; Sebastiani, G.; Palu, G. Spatiotemporal Analysis of COVID-19 Incidence Data. Viruses 2021, 13, 463. [Google Scholar] [CrossRef]
- Qiu, Y.; Chen, X.; Shi, W. Impacts of Social and Economic Factors on the Transmission of Coronavirus Disease 2019 (COVID-19) in China. J. Popul. Econ. 2020, 33, 1127–1172. [Google Scholar] [CrossRef] [PubMed]
- Ganasegeran, K.; Ch’ng, A.S.H.; Looi, I. COVID-19 in Malaysia: Crucial Measures in Critical Times. J. Glob. Health 2020, 10, 020333. [Google Scholar] [CrossRef] [PubMed]
- Rampal, L.; Liew, B.S.; Choolani, M.; Ganasegeran, K.; Pramanick, A.; Vallibhakara, S.A.; Tejativaddhana, P.; Hoe, V.C. Battling COVID-19 Pandemic Waves in Six South-East Asian Countries: A Real-Time Consensus Review. Med. J. Malays. 2020, 75, 613–625. [Google Scholar]
- Lim, J.T.; Maung, K.; Tan, S.T.; Ong, S.E.; Lim, J.M.; Koo, J.R.; Sun, H.; Park, M.; Tan, K.W.; Yoong, J.; et al. Estimating Direct and Spill-Over Impacts of Political Elections on COVID-19 Transmission using Synthetic Control Methods. PLoS Comput. Biol. 2021, 17, e1008959. [Google Scholar] [CrossRef]
- Ministry of Health Malaysia. Current Situation of COVID-19 Pandemic in Malaysia. Available online: http://covid-19.moh.gov.my/ (accessed on 4 February 2021).
- Department of Statistics Malaysia. Total Inhabitants per 1000 Population Revised Projection 2019. Available online: https://www.dosm.gov.my/v1/ (accessed on 4 February 2021).
- Department of Survey & Mapping Malaysia. Population Density. Available online: https://www.jupem.gov.my/ (accessed on 4 February 2021).
- United Nations Office for Coordination of Humanitarian Affairs. Administrative Shapefiles Malaysia. Available online: https://www.un.org/en/our-work/deliver-humanitarian-aid (accessed on 6 February 2021).
- PRIMA Malaysia. Housing Development by Regions in Malaysia. Available online: https://www.pr1ma.my/ (accessed on 10 February 2021).
- Ganasegeran, K.; Jamil, M.F.; Ch’ng, A.S.; Looi, I.; Peariasamy, K.M. Influence of Population Density for COVID-19 Spread in Malaysia: An Ecological Study. Int. J. Environ. Res. Public Health 2021, 18, 9866. [Google Scholar] [CrossRef]
- Department of Statistics Malaysia. Household Income and Basic Amenities Survey Report; Department of Statistics Malaysia: Putrajaya, Malaysia, 2019; ISSN 2232-1012. [Google Scholar]
- Department of Statistics Malaysia. Stats Geoportal Malaysia. 2021. Available online: https://statsgeo.mycensus.gov.my/geostats/mapv2.php (accessed on 1 February 2022).
- Open Data Portal. List of Government Healthcare Clinics. Available online: https://www.data.gov.my/data/ms_MY/dataset/klinik-kesihatan-kerajaan/resource/b5011e43-6b94-4683-a3f6-b6257abde24e (accessed on 4 February 2021).
- Zhang, T.; Lin, G. Identification of Local Clusters for Count Data: A Model-Based Moran’s I Test. J. Appl. Stat. 2008, 35, 293–306. [Google Scholar] [CrossRef]
- Castro, R.R.; Santos, R.S.C.; Sousa, G.J.B.; Pinheiro, Y.T.; Martins, R.; Pereira, M.L.D.; Silva, R.A.R. Spatial Dynamics of the COVID-19 Pandemic in Brazil. Epidemiol. Infect. 2021, 149, e60. [Google Scholar] [CrossRef]
- Raymundo, C.E.; Oliveira, M.C.; Eleuterio, T.A.; Andre, S.R.; da Silva, M.G.; Queiroz, E.R.D.S.; Medronho, R.A. Spatial Analysis of COVID-19 Incidence and the Sociodemographic Context in Brazil. PLoS ONE 2021, 16, e0247794. [Google Scholar]
- RStudio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2021; Available online: http://www.rstudio.com/ (accessed on 30 January 2022).
- Anselin, L.; Ibnu, S.; Youngihn, K. GeoDa: An Introduction to Spatial Data Analysis. Geograph. Anal. 2006, 38, 5–22. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Fotheringham, A.S. mgwr: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geoinf. 2019, 8, 269. [Google Scholar] [CrossRef] [Green Version]
- Bhunia, G.S.; Roy, S.; Shit, P.K. Spatio-Temporal Analysis of COVID-19 in India—A Geostatistical Approach. Spat. Inf. Res. 2021, 29, 661–672. [Google Scholar] [CrossRef]
- Qi, H.; Xiao, S.; Shi, R.; Ward, M.P.; Chen, Y.; Tu, W.; Su, Q.; Wang, W.; Wang, X.; Zhang, Z. COVID-19 Transmission in Mainland China is Associated with Temperature and Humidity: A Time-Series Analysis. Sci. Total Environ. 2020, 728, 138778. [Google Scholar] [CrossRef] [PubMed]
- Kuebart, A.; Stabler, M. Infectious Diseases as Socio-Spatial Processes: The COVID-19 Outbreak in Germany. Tijdschr. Econ. Soc. Geogr. 2020, 111, 482–496. [Google Scholar] [CrossRef] [PubMed]
- New Starits Times. Malaysia to Expand Mandatory Covid-19 Screening for Foreign Workers. Available online: https://www.straitstimes.com/asia/se-asia/malaysia-says-to-expand-mandatory-covid-19-screening-for-foreign-workers (accessed on 4 February 2021).
- Yntema, D.B. Measures of the Inequality in the Personal Distribution of Wealth or Income. J. Am. Stat. Assoc. 1933, 28, 423–433. [Google Scholar] [CrossRef]
- Demenech, L.M.; Dumith, S.C.; Vieira, M.E.C.D.; Neiva-Silva, L. Income Inequality and Risk of Infection and Death by COVID-19 in Brazil. Rev. Bras. Epidemiol. 2020, 23, e200095. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Kawachi, I. Association of Socioeconomic Characteristics with Disparities in COVID-19 Outcomes in Japan. JAMA Netw. Open 2021, 4, e2117060. [Google Scholar] [CrossRef]
- Xu, M.; Cohen, J.E. Analyzing and Interpreting Spatial and Temporal Variability of the United States County Population Distributions using Taylor’s Law. PLoS ONE 2019, 14, e0226096. [Google Scholar] [CrossRef] [Green Version]
- Quek, D. The Malaysian Health Care System: A Review. In Proceedings of the Intensive Workshop on Health Systems in Transition, Kuala Lumpur, Malaysia, 29–30 April 2009. [Google Scholar]
- Herd, P.; Karraker, A.; Friedman, E. The Social Patterns of a Biological Risk Factor for Disease: Race, Gender, Socioeconomic Position, and C-Reactive Protein. J. Gerontol. B Psychol. Sci. Soc. Sci. 2012, 67, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Tse, S.C.; Wyatt, L.C.; Trinh-Shevrin, C.; Kwon, S.C. Racial/Ethnic Differences in Influenza and Pneumococcal Vaccination Rates Among Older Adults in New York City and Los Angeles and Orange Counties. Prev. Chronic Dis. 2018, 15, 180101. [Google Scholar] [CrossRef]
- Kopel, J.; Perisetti, A.; Roghani, A.; Aziz, M.; Gajendran, M.; Goyal, H. Racial and Gender-Based Differences in COVID-19. Front. Public Health 2020, 8, 418. [Google Scholar] [CrossRef]
Indicators | Moran’s I Value (p-Value) |
---|---|
GINI coefficient | 0.10 (0.008) |
Average household income per capita | 0.46 (0.001) |
Coverage to primary healthcare | 0.01 (0.396) |
Percentage of Bumiputera | 0.28 (0.001) |
Percentage of Chinese | 0.20 (0.001) |
Percentage of Indian | 0.36 (0.001) |
Population density (Logged) | 0.41 (0.001) |
Indicators | OLS Model | SLM Model | SEM Model | GWR Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|
β | SE | p-Value | β | SE | p-Value | β | SE | p-Value | β (Mean) | |
GINI coefficient | 2.261 | 0.903 | 0.013 | 1.931 | 0.837 | 0.021 | 1.558 | 0.833 | 0.041 | 0.207 |
Average household income per capita | 0.271 | 0.073 | <0.001 | 0.266 | 0.067 | <0.001 | 0.263 | 0.066 | 0.003 | 0.254 |
Coverage to primary healthcare | 0.017 | 0.014 | 0.231 | 0.015 | 0.013 | 0.257 | 0.019 | 0.012 | 0.111 | 0.007 |
Percentage of Bumiputera | −0.064 | 0.035 | 0.066 | −0.055 | 0.032 | 0.087 | −0.052 | 0.035 | 0.136 | −1.526 |
Percentage of Chinese | −0.060 | 0.034 | 0.083 | −0.049 | 0.032 | 0.124 | −0.047 | 0.035 | 0.183 | −1.059 |
Percentage of Indian | −0.052 | 0.035 | 0.137 | −0.053 | 0.032 | 0.104 | 0.043 | 0.036 | 0.227 | −0.130 |
Population density (Logged) | 0.388 | 0.097 | <0.001 | 0.340 | 0.092 | <0.001 | 0.450 | 0.120 | <0.001 | 0.269 |
Model Performance | ||||||||||
Number of observations | 144 | 144 | 144 | 144 | ||||||
Log likelihood | −117.936 | −112.277 | −108.317 | −105.645 | ||||||
Akaike Information Criterion (AIC) | 251.871 | 242.553 | 232.635 | 229.435 | ||||||
R square | 0.552 | 0.593 | 0.630 | 0.661 | ||||||
Lag Coefficient (ρ) | - | 0.264 | - | - | ||||||
Error Lag Value (λ) | - | - | 0.460 | - | ||||||
Jarque–Bera | 12.584 (p = 0.002) | - | - | - | ||||||
Breusch–Pagan | 15.805 (p = 0.027) | 15.832 (p = 0.026) | 15.868 (p = 0.026) | - | ||||||
Koenker–Bassett | 13.446 (p = 0.006) | - | - | - |
Potential Indicators |
---|
1. Unemployment 2. Proportion of population with secondary education or less 3. Territorial (area-based) occupations 4. Proportion of older aged persons (more than 60 years old) 5. Proportion of median household income (B40 low-income group) 6. Proportion of median household income (M40 middle-income group) 7. Proportion of median household income (T20 high-income group) 8. Frequency of contacts 9. Human mobility intra-districts 10. Human mobility inter-districts 11. Proportion of urban population 12. Proportion of rural population 13. Urbanization growth rate 14. Vaccination coverage 15. Climatic factors |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganasegeran, K.; Jamil, M.F.A.; Appannan, M.R.; Ch’ng, A.S.H.; Looi, I.; Peariasamy, K.M. Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 2082. https://doi.org/10.3390/ijerph19042082
Ganasegeran K, Jamil MFA, Appannan MR, Ch’ng ASH, Looi I, Peariasamy KM. Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia. International Journal of Environmental Research and Public Health. 2022; 19(4):2082. https://doi.org/10.3390/ijerph19042082
Chicago/Turabian StyleGanasegeran, Kurubaran, Mohd Fadzly Amar Jamil, Maheshwara Rao Appannan, Alan Swee Hock Ch’ng, Irene Looi, and Kalaiarasu M. Peariasamy. 2022. "Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia" International Journal of Environmental Research and Public Health 19, no. 4: 2082. https://doi.org/10.3390/ijerph19042082
APA StyleGanasegeran, K., Jamil, M. F. A., Appannan, M. R., Ch’ng, A. S. H., Looi, I., & Peariasamy, K. M. (2022). Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia. International Journal of Environmental Research and Public Health, 19(4), 2082. https://doi.org/10.3390/ijerph19042082