Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = liquid film translocation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2587 KiB  
Article
Enhancing Physiological Realism in Nasal Spray Deposition Studies: Synthetic Mucus Properties and Interactions with Saline Solutions and Stereolithography Resin
by Amr Seifelnasr, Farhad Zare, Xiuhua Si and Jinxiang Xi
Liquids 2025, 5(2), 11; https://doi.org/10.3390/liquids5020011 - 7 Apr 2025
Cited by 1 | Viewed by 1510
Abstract
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v [...] Read more.
This study investigated the role of synthetic mucus coatings in enhancing the physiological relevance of in vitro nasal spray deposition assessments using 3D-printed nasal cavity models. Synthetic mucus solutions, representing normal (0.25% w/v xanthan gum) and diseased (1% w/v xanthan gum) nasal conditions, were developed to mimic the viscoelastic properties of human nasal mucus. Their physical properties, including viscosity, surface tension, contact angle, and adhesivity on dry and synthetic mucus-coated stereolithography (SLA) surfaces, were systematically characterized. Comparative experiments evaluated the behavior of saline drops and liquid films on dry versus synthetic mucus-coated SLA surfaces at inclinations of 30°, 45°, and 60°. Observational deposition experiments using anatomically accurate nasal models were conducted under a 45° backward-tilted head position with gentle sniff airflow across uncoated, 0.25% w/v mucus-coated, and 1% w/v mucus-coated surfaces. Synthetic mucus coatings significantly influenced saline spray deposition patterns. On uncoated surfaces, deposition consisted of scattered droplets and limited film formation, mainly in the anterior and turbinate regions. In contrast, synthetic mucus coatings facilitated broader and more uniform liquid distribution due to diffusion and lubrication effects. These findings highlight the value of synthetic mucus coatings for better simulating nasal environments, offering insights to optimize nasal spray formulations and delivery devices. Full article
(This article belongs to the Section Physics of Liquids)
Show Figures

Figure 1

22 pages, 5653 KiB  
Article
Effects of Nozzle Retraction Elimination on Spray Distribution in Middle-Posterior Turbinate Regions: A Comparative Study
by Amr Seifelnasr, Xiuhua Si and Jinxiang Xi
Pharmaceutics 2024, 16(5), 683; https://doi.org/10.3390/pharmaceutics16050683 - 19 May 2024
Cited by 2 | Viewed by 1751
Abstract
The standard multi-dose nasal spray pump features an integrated actuator and nozzle, which inevitably causes a retraction of the nozzle tip during application. The retraction stroke is around 5.5 mm and drastically reduces the nozzle’s insertion depth, which further affects the initial nasal [...] Read more.
The standard multi-dose nasal spray pump features an integrated actuator and nozzle, which inevitably causes a retraction of the nozzle tip during application. The retraction stroke is around 5.5 mm and drastically reduces the nozzle’s insertion depth, which further affects the initial nasal spray deposition and subsequent translocation, potentially increasing drug wastes and dosimetry variability. To address this issue, we designed a new spray pump that separated the nozzle from the actuator and connected them with a flexible tube, thereby eliminating nozzle retraction during application. The objective of this study is to test the new device’s performance in comparison to the conventional nasal pump in terms of spray generation, plume development, and dosimetry distribution. For both devices, the spray droplet size distribution was measured using a laser diffraction particle analyzer. Plume development was recorded with a high-definition camera. Nasal dosimetry was characterized in two transparent nasal cavity casts (normal and decongested) under two breathing conditions (breath-holding and constant inhalation). The nasal formulation was a 0.25% w/v methyl cellulose aqueous solution with a fluorescent dye. For each test case, the temporospatial spray translocation in the nasal cavity was recorded, and the final delivered doses were quantified in five nasal regions. The results indicate minor differences in droplet size distribution between the two devices. The nasal plume from the new device presents a narrower plume angle. The head orientation, the depth at which the nozzle is inserted into the nostril, and the administration angle play crucial roles in determining the initial deposition of nasal sprays as well as the subsequent translocation of the liquid film/droplets. Quantitative measurements of deposition distributions in the nasal models were augmented with visualization recordings to evaluate the delivery enhancements introduced by the new device. With an extension tube, the modified device produced a lower spray output and delivered lower doses in the front, middle, and back turbinate than the conventional nasal pump. However, sprays from the new device were observed to penetrate deeper into the nasal passages, predominantly through the middle-upper meatus. This resulted in consistently enhanced dosing in the middle-upper turbinate regions while at the cost of higher drug loss to the pharynx. Full article
Show Figures

Figure 1

21 pages, 6533 KiB  
Article
Visualization and Estimation of Nasal Spray Delivery to Olfactory Mucosa in an Image-Based Transparent Nasal Model
by Amr Seifelnasr, Xiuhua April Si and Jinxiang Xi
Pharmaceutics 2023, 15(6), 1657; https://doi.org/10.3390/pharmaceutics15061657 - 5 Jun 2023
Cited by 18 | Viewed by 4452
Abstract
Background: Nose-to-brain (N2B) drug delivery offers unique advantages over intravenous methods; however, the delivery efficiency to the olfactory region using conventional nasal devices and protocols is low. This study proposes a new strategy to effectively deliver high doses to the olfactory region while [...] Read more.
Background: Nose-to-brain (N2B) drug delivery offers unique advantages over intravenous methods; however, the delivery efficiency to the olfactory region using conventional nasal devices and protocols is low. This study proposes a new strategy to effectively deliver high doses to the olfactory region while minimizing dose variability and drug losses in other regions of the nasal cavity. Materials and Methods: The effects of delivery variables on the dosimetry of nasal sprays were systematically evaluated in a 3D-printed anatomical model that was generated from a magnetic resonance image of the nasal airway. The nasal model comprised four parts for regional dose quantification. A transparent nasal cast and fluorescent imaging were used for visualization, enabling detailed examination of the transient liquid film translocation, real-time feedback on input effect, and prompt adjustment to delivery variables, which included the head position, nozzle angle, applied dose, inhalation flow, and solution viscosity. Results: The results showed that the conventional vertex-to-floor head position was not optimal for olfactory delivery. Instead, a head position tilting 45–60° backward from the supine position gave a higher olfactory deposition and lower variability. A two-dose application (250 mg) was necessary to mobilize the liquid film that often accumulated in the front nose following the first dose administration. The presence of an inhalation flow reduced the olfactory deposition and redistributed the sprays to the middle meatus. The recommended olfactory delivery variables include a head position ranging 45–60°, a nozzle angle ranging 5–10°, two doses, and no inhalation flow. With these variables, an olfactory deposition fraction of 22.7 ± 3.7% was achieved in this study, with insignificant discrepancies in olfactory delivery between the right and left nasal passages. Conclusions: It is feasible to deliver clinically significant doses of nasal sprays to the olfactory region by leveraging an optimized combination of delivery variables. Full article
Show Figures

Figure 1

16 pages, 3204 KiB  
Article
A Supine Position and Dual-Dose Applications Enhance Spray Dosing to the Posterior Nose: Paving the Way for Mucosal Immunization
by Amr Seifelnasr, Mohamed Talaat, Pranav Ramaswamy, Xiuhua April Si and Jinxiang Xi
Pharmaceutics 2023, 15(2), 359; https://doi.org/10.3390/pharmaceutics15020359 - 20 Jan 2023
Cited by 11 | Viewed by 2561
Abstract
Delivering vaccines to the posterior nose has been proposed to induce mucosal immunization. However, conventional nasal devices often fail to deliver sufficient doses to the posterior nose. This study aimed to develop a new delivery protocol that can effectively deliver sprays to the [...] Read more.
Delivering vaccines to the posterior nose has been proposed to induce mucosal immunization. However, conventional nasal devices often fail to deliver sufficient doses to the posterior nose. This study aimed to develop a new delivery protocol that can effectively deliver sprays to the caudal turbinate and nasopharynx. High-speed imaging was used to characterize the nasal spray plumes. Three-dimensional-printed transparent nasal casts were used to visualize the spray deposition within the nasal airway, as well as the subsequent liquid film formation and translocation. Influencing variables considered included the device type, delivery mode, release angle, flow rate, head position, and dose number. Apparent liquid film translocation was observed in the nasal cavity. To deliver sprays to the posterior nose, the optimal release angle was found to be 40° for unidirectional delivery and 30° for bidirectional delivery. The flow shear was the key factor that mobilized the liquid film. Both the flow shear and the head position were important in determining the translocation distance. A supine position and dual-dose application significantly improved delivery to the nasopharynx, i.e., 31% vs. 0% with an upright position and one-dose application. It is feasible to effectively deliver medications to the posterior nose by leveraging liquid film translocation for mucosal immunization. Full article
(This article belongs to the Special Issue Inhaled Treatment of Respiratory Infections)
Show Figures

Graphical abstract

19 pages, 5269 KiB  
Article
Liquid Film Translocation Significantly Enhances Nasal Spray Delivery to Olfactory Region: A Numerical Simulation Study
by Xiuhua April Si, Muhammad Sami and Jinxiang Xi
Pharmaceutics 2021, 13(6), 903; https://doi.org/10.3390/pharmaceutics13060903 - 18 Jun 2021
Cited by 21 | Viewed by 5546
Abstract
Previous in vivo and ex vivo studies have tested nasal sprays with varying head positions to enhance the olfactory delivery; however, such studies often suffered from a lack of quantitative dosimetry in the target region, which relied on the observer’s subjective perception of [...] Read more.
Previous in vivo and ex vivo studies have tested nasal sprays with varying head positions to enhance the olfactory delivery; however, such studies often suffered from a lack of quantitative dosimetry in the target region, which relied on the observer’s subjective perception of color changes in the endoscopy images. The objective of this study is to test the feasibility of gravitationally driven droplet translocation numerically to enhance the nasal spray dosages in the olfactory region and quantify the intranasal dose distribution in the regions of interest. A computational nasal spray testing platform was developed that included a nasal spray releasing model, an airflow-droplet transport model, and an Eulerian wall film formation/translocation model. The effects of both device-related and administration-related variables on the initial olfactory deposition were studied, including droplet size, velocity, plume angle, spray release position, and orientation. The liquid film formation and translocation after nasal spray applications were simulated for both a standard and a newly proposed delivery system. Results show that the initial droplet deposition in the olfactory region is highly sensitive to the spray plume angle. For the given nasal cavity with a vertex-to-floor head position, a plume angle of 10° with a device orientation of 45° to the nostril delivered the optimal dose to the olfactory region. Liquid wall film translocation enhanced the olfactory dosage by ninefold, compared to the initial olfactory dose, for both the baseline and optimized delivery systems. The optimized delivery system delivered 6.2% of applied sprays to the olfactory region and significantly reduced drug losses in the vestibule. Rheological properties of spray formulations can be explored to harness further the benefits of liquid film translocation in targeted intranasal deliveries. Full article
(This article belongs to the Special Issue Nose-To-Brain Drug Delivery System)
Show Figures

Figure 1

Back to TopTop