Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = liquid Ge2Sb2Te5

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1720 KB  
Article
Chemical Ordering in Liquid and Supercooled Ge2Sb2Te5 Phase-Change Materials
by Tae Hoon Lee
Materials 2025, 18(16), 3900; https://doi.org/10.3390/ma18163900 - 20 Aug 2025
Viewed by 416
Abstract
The origin of chemical ordering in liquid and supercooled liquid Ge2Sb2Te5 (GST) was investigated using ab initio molecular dynamics (AIMD) simulations. Bond dynamics were analyzed via continuous (τcon) and intermittent (τint [...] Read more.
The origin of chemical ordering in liquid and supercooled liquid Ge2Sb2Te5 (GST) was investigated using ab initio molecular dynamics (AIMD) simulations. Bond dynamics were analyzed via continuous (τcon) and intermittent (τint) lifetimes. The intermittent lifetime (τint) reveals that chemically ordered Ge-Te and Sb-Te bonds are the most stable, although τcon exhibits a stability anomaly. The faster increase of τint for these bonds upon cooling explains the overall chemical ordering. A novel ordering mechanism was identified through the analysis of bond separation dynamics. Te-Te ‘wrong’ bonds exhibit a unique dynamic instability, breaking and separating much faster than any other bond type, which actively drives the system towards chemical order. A correlation between lifetime and bond strength, as calculated by the Integrated Crystal Orbital Hamilton Population (ICOHP), supports these dynamic findings. Chemical ordering shows a positive correlation with medium-range structural order, evidenced by the instability of 4-fold rings containing wrong bonds. This study provides a detailed dynamic origin for ordering in liquid GST, highlighting the role of Te-Te bond relaxation. Full article
Show Figures

Figure 1

15 pages, 3502 KB  
Article
Distribution of Rare Elements in Distillation Processing of Polymetallic Matte
by Valeriy Volodin, Alina Nitsenko, Xeniya Linnik and Sergey Trebukhov
Metals 2023, 13(12), 1934; https://doi.org/10.3390/met13121934 - 24 Nov 2023
Viewed by 1415
Abstract
The results of studies on the distribution of rare elements among the products of distillation processing of polymetallic mattes are present in this article. Schemes of the developed technological equipment for the implementation of the extraction processes of rare elements via the vacuum [...] Read more.
The results of studies on the distribution of rare elements among the products of distillation processing of polymetallic mattes are present in this article. Schemes of the developed technological equipment for the implementation of the extraction processes of rare elements via the vacuum distillation of mattes are presented. Technological tests were performed with a matte of lead, copper, and antimony plants at 1100–1250 °C and a pressure of up to 700 Pa. It was established that As, Cd, Bi, In, and Ge, by more than 90% in total, are extracted into condensate and dust in the distillation process of volatile components from mattes of lead production. At the same time, antimony is distributed between the distillate residue and condensate. Antimony by 90.47%, arsenic by 78.83% and cadmium by 98.72% are distributed into sulfide condensate and dust in the distillation of copper production matte. From the matte of the antimony plant, Sb and Bi (90.76% and 89.78%, respectively) are transferred into the condensate and cyclone dust. Arsenic is distributed between the liquid and vapor phases. Based on calculations, Se and Te will be mainly concentrated in the distillation residue. High-grade copper mattes obtained in processing mattes from lead and copper plants can be further used to obtain metallic copper by converting. The condensate and dust can be processed separately or with the dust of the mainline production for rare metal extraction. Antimony matte processing condensate containing more than 70% Sb can be directed to the process of crude antimony refining. Full article
Show Figures

Figure 1

10 pages, 3554 KB  
Article
Interface Analysis of MOCVD Grown GeTe/Sb2Te3 and Ge-Rich Ge-Sb-Te/Sb2Te3 Core-Shell Nanowires
by Arun Kumar, Seyed Ariana Mirshokraee, Alessio Lamperti, Matteo Cantoni, Massimo Longo and Claudia Wiemer
Nanomaterials 2022, 12(10), 1623; https://doi.org/10.3390/nano12101623 - 10 May 2022
Cited by 2 | Viewed by 2452
Abstract
Controlling material thickness and element interdiffusion at the interface is crucial for many applications of core-shell nanowires. Herein, we report the thickness-controlled and conformal growth of a Sb2Te3 shell over GeTe and Ge-rich Ge-Sb-Te core nanowires synthesized via metal-organic chemical [...] Read more.
Controlling material thickness and element interdiffusion at the interface is crucial for many applications of core-shell nanowires. Herein, we report the thickness-controlled and conformal growth of a Sb2Te3 shell over GeTe and Ge-rich Ge-Sb-Te core nanowires synthesized via metal-organic chemical vapor deposition (MOCVD), catalyzed by the Vapor–Liquid–Solid (VLS) mechanism. The thickness of the Sb2Te3 shell could be adjusted by controlling the growth time without altering the nanowire morphology. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques were employed to examine the surface morphology and the structure of the nanowires. The study aims to investigate the interdiffusion, intactness, as well as the oxidation state of the core-shell nanowires. Angle-resolved X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface chemistry of the nanowires. No elemental interdiffusion between the GeTe, Ge-rich Ge-Sb-Te cores, and Sb2Te3 shell of the nanowires was revealed. Chemical bonding between the core and the shell was observed. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Germanium Chalcogenides)
Show Figures

Figure 1

10 pages, 2492 KB  
Article
Phase Change Ge-Rich Ge–Sb–Te/Sb2Te3 Core-Shell Nanowires by Metal Organic Chemical Vapor Deposition
by Arun Kumar, Raimondo Cecchini, Claudia Wiemer, Valentina Mussi, Sara De Simone, Raffaella Calarco, Mario Scuderi, Giuseppe Nicotra and Massimo Longo
Nanomaterials 2021, 11(12), 3358; https://doi.org/10.3390/nano11123358 - 10 Dec 2021
Cited by 4 | Viewed by 3410
Abstract
Ge-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires grown by metal-organic chemical vapor deposition. [...] Read more.
Ge-rich Ge–Sb–Te compounds are attractive materials for future phase change memories due to their greater crystallization temperature as it provides a wide range of applications. Herein, we report the self-assembled Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires grown by metal-organic chemical vapor deposition. The core Ge-rich Ge–Sb–Te nanowires were self-assembled through the vapor–liquid–solid mechanism, catalyzed by Au nanoparticles on Si (100) and SiO2/Si substrates; conformal overgrowth of the Sb2Te3 shell was subsequently performed at room temperature to realize the core-shell heterostructures. Both Ge-rich Ge–Sb–Te core and Ge-rich Ge–Sb–Te/Sb2Te3 core-shell nanowires were extensively characterized by means of scanning electron microscopy, high resolution transmission electron microscopy, X-ray diffraction, Raman microspectroscopy, and electron energy loss spectroscopy to analyze the surface morphology, crystalline structure, vibrational properties, and elemental composition. Full article
(This article belongs to the Special Issue Synthesis, Properties and Applications of Germanium Chalcogenides)
Show Figures

Figure 1

9 pages, 3320 KB  
Article
MOCVD Growth of GeTe/Sb2Te3 Core–Shell Nanowires
by Arun Kumar, Raimondo Cecchini, Claudia Wiemer, Valentina Mussi, Sara De Simone, Raffaella Calarco, Mario Scuderi, Giuseppe Nicotra and Massimo Longo
Coatings 2021, 11(6), 718; https://doi.org/10.3390/coatings11060718 - 15 Jun 2021
Cited by 6 | Viewed by 3571
Abstract
We report the self-assembly of core–shell GeTe/Sb2Te3 nanowires (NWs) on Si (100), and SiO2/Si substrates by metalorganic chemical vapour deposition, coupled to the vapour–liquid–solid mechanism, catalyzed by Au nanoparticles. Scanning electron microscopy, X-ray diffraction, micro-Raman mapping, high-resolution transmission [...] Read more.
We report the self-assembly of core–shell GeTe/Sb2Te3 nanowires (NWs) on Si (100), and SiO2/Si substrates by metalorganic chemical vapour deposition, coupled to the vapour–liquid–solid mechanism, catalyzed by Au nanoparticles. Scanning electron microscopy, X-ray diffraction, micro-Raman mapping, high-resolution transmission electron microscopy, and electron energy loss spectroscopy were employed to investigate the morphology, structure, and composition of the obtained core and core–shell NWs. A single crystalline GeTe core and a polycrystalline Sb2Te3 shell formed the NWs, having core and core–shell diameters in the range of 50–130 nm and an average length up to 7 µm. Full article
Show Figures

Figure 1

10 pages, 422 KB  
Article
Separation and Recycling for Rare Earth Elements by Homogeneous Liquid-Liquid Extraction (HoLLE) Using a pH-Responsive Fluorine-Based Surfactant
by Shotaro Saito, Osamu Ohno, Shukuro Igarashi, Takeshi Kato and Hitoshi Yamaguchi
Metals 2015, 5(3), 1543-1552; https://doi.org/10.3390/met5031543 - 27 Aug 2015
Cited by 11 | Viewed by 8810
Abstract
A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE) using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, [...] Read more.
A selective separation and recycling system for metal ions was developed by homogeneous liquid-liquid extraction (HoLLE) using a fluorosurfactant. Sixty-two different elemental ions (e.g., Ag, Al, As, Au, B, Ba, Be, Bi, Ca, Cd, Ce, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Gd, Ge, Hf, Hg, Ho, In, Ir, La, Lu, Mg, Mn, Mo, Nb, Nd, Ni, Os, P, Pb, Pd, Pr, Pt, Re, Rh, Ru, Sb, Sc, Se, Si, Sm, Sn, Sr, Ta, Tb, Te, Ti, Tl, Tm, V, W, Y, Yb, Zn, and Zr) were examined. By changing pH from a neutral or alkaline solution (pH ≥ 6.5) to that of an acidic solution (pH < 4.0), gallium, zirconium, palladium, silver, platinum, and rare earth elements were extracted at >90% efficiency into a sedimented Zonyl FSA® (CF3(CF2)n(CH2)2S(CH2)2COOH, n = 6–8) liquid phase. Moreover, all rare earth elements were obtained with superior extraction and stripping percentages. In the recycling of rare earth elements, the sedimented phase was maintained using a filter along with a mixed solution of THF and 1 M sodium hydroxide aqueous solution. The Zonyl FSA® was filtrated and the rare earth elements were recovered on the filter as a hydroxide. Furthermore, the filtrated Zonyl FSA was reusable by conditioning the subject pH. Full article
(This article belongs to the Special Issue Hydrometallurgy)
Show Figures

Graphical abstract

Back to TopTop