Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = lignanamides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3658 KiB  
Article
Bioactive Metabolites from the Dusty Seeds of Gastrodia elata Bl., Based on Metabolomics and UPLC-Q-TOF-MS Combined with Molecular Network Strategy
by Yanduo Wang, Liwen Zhong, Huiqi Fang, Zhao Liu, Peng Wang, Longfei Li, Lin Chen and Gang Ding
Plants 2025, 14(6), 916; https://doi.org/10.3390/plants14060916 - 14 Mar 2025
Cited by 1 | Viewed by 535
Abstract
Orchids produce tiny, light seeds (dust-like seeds without endosperm) that rely on specific symbiotic fungi for successful germination. Plant roots often release small signaling molecules or bioactive compounds to attract arbuscular mycorrhizal (AM) fungi, promoting fungal growth and hyphal branching. However, until now, [...] Read more.
Orchids produce tiny, light seeds (dust-like seeds without endosperm) that rely on specific symbiotic fungi for successful germination. Plant roots often release small signaling molecules or bioactive compounds to attract arbuscular mycorrhizal (AM) fungi, promoting fungal growth and hyphal branching. However, until now, no such bioactive or signaling molecules have been identified in orchids that help recruit fungi for seed germination. In this study, we used metabolomics and UPLC-Q-TOF-MS/MS, combined with a molecular network approach, to explore potential bioactive/signaling molecules in the seeds of the achlorophyllous orchid Gastrodia elata Bl. Our analysis revealed the presence of amino acids, nucleotides, lipids, organic acids, saccharides, phospholipids, and lignanamides. Specifically, organic acids, saccharides, and lignanamides were shown to promote the growth of Mycena osmundicola, a fungus important for seed germination. Additionally, lignanamides inhibited the plant pathogen Fusarium oxysporum and exhibited strong antioxidant and anti-inflammatory activities. This is the first systematic identification of bioactive/signaling molecules in G. elata Bl. seeds, providing new insights into the symbiotic relationship between orchids and fungi. Full article
(This article belongs to the Special Issue Phytochemistry, Pharmacology, and Toxicity of Medicinal Plants)
Show Figures

Figure 1

18 pages, 3800 KiB  
Article
Discovery of Active Ingredients Targeted TREM2 by SPR Biosensor-UPLC/MS Recognition System, and Investigating the Mechanism of Anti-Neuroinflammatory Activity on the Lignin-Amides from Datura metel Seeds
by Si-Yi Wang, Yan Liu, Xiao-Mao Li, Adnan Mohammed Algradi, Hai Jiang, Yan-Ping Sun, Wei Guan, Juan Pan, Hai-Xue Kuang and Bing-You Yang
Molecules 2021, 26(19), 5946; https://doi.org/10.3390/molecules26195946 - 30 Sep 2021
Cited by 10 | Viewed by 3717
Abstract
As a new target protein for Alzheimer’s disease (AD), the triggering receptor expressed on myeloid Cells 2 (TREM2) was expressed on the surface of microglia, which was shown to regulate neuroinflammation, be associated with a variety of neuropathologic, and regarded as a potential [...] Read more.
As a new target protein for Alzheimer’s disease (AD), the triggering receptor expressed on myeloid Cells 2 (TREM2) was expressed on the surface of microglia, which was shown to regulate neuroinflammation, be associated with a variety of neuropathologic, and regarded as a potential indicator for monitoring AD. In this study, a novel recognition system based on surface plasmon resonance (SPR) for the TREM2 target spot was established coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC-MS), in order to screen the active ingredients targeting TREM2 from Datura metel seeds. The results showed that four lignan-amides were discovered as candidate compounds by SPR biosensor-UPLC/MS recognition analysis. According to the guidance of the active ingredients discovered by the system, the lignin-amides from Datura metel seeds (LDS) were preliminarily identified as containing 27 lignan-amides, which were enriched compositions by the HP-20 of Datura metel seeds. Meanwhile, the anti-inflammatory activity of LDS was evaluated in BV2 microglia induced by LPS. Our experimental results demonstrated that LDS could reduce NO release in LPS-treated BV2 microglia cells and significantly reduce the expression of the proteins of inducible Nitric Oxide Synthase (iNOS), cyclooxygenase 2 (COX-2), microtubule-associated protein tau (Tau), and ionized calcium-binding adapter molecule 1 (IBA-1). Accordingly, LDS might increase the expression of TREM2/DNAX-activating protein of 12 kDa (DAP12) and suppress the Toll-like receptor SX4 (TLR4) pathway and Recombinant NLR Family, Pyrin Domain Containing Protein 3 (NLRP3)/cysteinyl aspartate specific proteinase-1 (Caspase-1) inflammasome expression by LDS in LPS-induced BV2 microglial cells. Then, the inhibitory release of inflammatory factors Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), and Tumor necrosis factor-alpha (TNFα) inflammatory cytokines were detected to inhibit neuroinflammatory responses. The present results propose that LDS has potential as an anti-neuroinflammatory agent against microglia-mediated neuroinflammatory disorders. Full article
(This article belongs to the Special Issue Bioactive Molecules in Medicinal Chemistry)
Show Figures

Figure 1

19 pages, 1613 KiB  
Article
New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes
by Xiao-Cui Zhuang, Gui-Lin Chen, Ye Liu, Yong-Li Zhang and Ming-Quan Guo
Antioxidants 2021, 10(3), 370; https://doi.org/10.3390/antiox10030370 - 1 Mar 2021
Cited by 22 | Viewed by 4243
Abstract
Warburgia ugandensis, also known as “green heart,” is widely used for the treatment of various diseases as a traditional ethnomedicinal plant in local communities in Africa. In this work, 9 and 12 potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from [...] Read more.
Warburgia ugandensis, also known as “green heart,” is widely used for the treatment of various diseases as a traditional ethnomedicinal plant in local communities in Africa. In this work, 9 and 12 potential superoxide dismutase (SOD) and xanthine oxidase (XOD) ligands from W. ugandensis were quickly screened out by combining SOD and XOD affinity ultrafiltration with LC-MS, respectively. In this way, four new lignanamides (compounds 1114) and one new macrocyclic glycoside (compound 5), along with three known compounds (compounds 1, 3, and 7), were isolated and identified firstly in this species. The structures of the new compounds were elucidated by spectroscopic analysis, including NMR and UPLC-QTOF-MS/MS. Among these compounds, compound 14 showed the highest 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2′-azinobis-(3-ethylbenzthiazoline)-6-sulfonic acid (ABTS) radical scavenging activities, and total ferric-reducing antioxidant power (FRAP) with IC50 values of 6.405 ± 0.362 µM, 5.381 ± 0.092 µM, and 17.488 ± 1.625 mmol TE/g, respectively. Moreover, compound 14 displayed the highest inhibitory activity on cyclooxygenase-2 (COX-2) with IC50 value of 0.123 ± 0.004 µM, and the ranking order of other compounds’ IC50 values was 13 > 11 > 7 > 1 > 12. The present study suggested that lignanamides might represent interesting new characteristic functional components of W. ugandensis to exert remarkable antioxidant and anti-inflammatory activities. Moreover, compound 14, a new arylnaphthalene lignanamide, would be a highly potential natural antioxidant and anti-inflammatory agent from W. ugandensis. Full article
(This article belongs to the Special Issue Antioxidant and Biological Properties of Plant Extracts)
Show Figures

Graphical abstract

25 pages, 3614 KiB  
Article
Hempseed Lignanamides Rich-Fraction: Chemical Investigation and Cytotoxicity towards U-87 Glioblastoma Cells
by Ersilia Nigro, Giuseppina Crescente, Marialuisa Formato, Maria Tommasina Pecoraro, Marta Mallardo, Simona Piccolella, Aurora Daniele and Severina Pacifico
Molecules 2020, 25(5), 1049; https://doi.org/10.3390/molecules25051049 - 26 Feb 2020
Cited by 46 | Viewed by 6132
Abstract
The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse [...] Read more.
The weak but noteworthy presence of (poly)phenols in hemp seeds has been long overshadowed by the essential polyunsaturated fatty acids and digestible proteins, considered responsible for their high nutritional benefits. Instead, lignanamides and their biosynthetic precursors, phenylamides, seem to display interesting and diverse biological activities only partially clarified in the last decades. Herein, negative mode HR-MS/MS techniques were applied to the chemical investigation of a (poly)phenol-rich fraction, obtained from hemp seeds after extraction/fractionation steps. This extract contained phenylpropanoid amides and their random oxidative coupling derivatives, lignanamides, which were the most abundant compounds and showed a high chemical diversity, deeply unraveled through high resolution tandem mass spectrometry (HR-MS/MS) tools. The effect of different doses of the lignanamides-rich extract (LnHS) on U-87 glioblastoma cell line and non-tumorigenic human fibroblasts was evaluated. Thus, cell proliferation, genomic DNA damage, colony forming and wound repair capabilities were assessed, as well as LnHS outcome on the expression levels of pro-inflammatory cytokines. LnHS significantly inhibited U-87 cancer cell proliferation, but not that of fibroblasts, and was able to reduce U-87 cell migration, inducing further DNA damage. No modification in cytokines’ expression level was found. Data acquired suggested that LnHS acted in U-87 cells by inducing the apoptosis machinery and suppressing the autophagic cell death. Full article
(This article belongs to the Special Issue Food Bioactives: Chemical Challenges and Bio-Opportunities)
Show Figures

Figure 1

12 pages, 274 KiB  
Article
Analysis of Phenolic Compounds in Commercial Cannabis sativa L. Inflorescences Using UHPLC-Q-Orbitrap HRMS
by Luana Izzo, Luigi Castaldo, Alfonso Narváez, Giulia Graziani, Anna Gaspari, Yelko Rodríguez-Carrasco and Alberto Ritieni
Molecules 2020, 25(3), 631; https://doi.org/10.3390/molecules25030631 - 31 Jan 2020
Cited by 125 | Viewed by 9506
Abstract
Industrial hemp (Cannabis sativa L. Family Cannabaceae) contains a vast number of bioactive relevant compounds, namely polyphenols including flavonoids, phenolic acids, phenol amides, and lignanamides, well known for their therapeutic properties. Nowadays, many polyphenols-containing products made of herbal extracts are marketed, claiming [...] Read more.
Industrial hemp (Cannabis sativa L. Family Cannabaceae) contains a vast number of bioactive relevant compounds, namely polyphenols including flavonoids, phenolic acids, phenol amides, and lignanamides, well known for their therapeutic properties. Nowadays, many polyphenols-containing products made of herbal extracts are marketed, claiming to exert health-promoting effects. In this context, industrial hemp inflorescence may represent an innovative source of bioactive compounds to be used in nutraceutical formulations. The aim of this work was to provide a comprehensive analysis of the polyphenolic fraction contained in polar extracts of four different commercial cultivars (Kompoti, Tiborszallasi, Antal, and Carmagnola Cs) of hemp inflorescences through spectrophotometric (TPC, DPPH tests) and spectrometry measurement (UHPLC-Q-Orbitrap HRMS). Results highlighted a high content of cannflavin A and B in inflorescence analyzed samples, which appear to be cannabis-specific, with a mean value of 61.8 and 84.5 mg/kg, meaning a ten-to-hundred times increase compared to other parts of the plant. Among flavonols, quercetin-3-glucoside reached up to 285.9 mg/kg in the Carmagnola CS cultivar. Catechin and epicatechin were the most representative flavanols, with a mean concentration of 53.3 and 66.2 mg/kg, respectively, for all cultivars. Total polyphenolic content in inflorescence samples was quantified in the range of 10.51 to 52.58 mg GAE/g and free radical-scavenging included in the range from 27.5 to 77.6 mmol trolox/kg. Therefore, C. sativa inflorescence could be considered as a potential novel source of polyphenols intended for nutraceutical formulations. Full article
(This article belongs to the Collection Herbal Medicine Research)
Show Figures

Graphical abstract

16 pages, 2092 KiB  
Review
Impact of Nitrogen Nutrition on Cannabis sativa: An Update on the Current Knowledge and Future Prospects
by Simone Landi, Roberto Berni, Giorgia Capasso, Jean-Francois Hausman, Gea Guerriero and Sergio Esposito
Int. J. Mol. Sci. 2019, 20(22), 5803; https://doi.org/10.3390/ijms20225803 - 18 Nov 2019
Cited by 35 | Viewed by 9253
Abstract
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is [...] Read more.
Nitrogen (N) availability represents one of the most critical factors affecting cultivated crops. N is indeed a crucial macronutrient influencing major aspects, from plant development to productivity and final yield of lignocellulosic biomass, as well as content of bioactive molecules. N metabolism is fundamental as it is at the crossroad between primary and secondary metabolic pathways: Besides affecting the synthesis of fundamental macromolecules, such as nucleic acids and proteins, N is needed for other types of molecules intervening in the response to exogenous stresses, e.g. alkaloids and glucosinolates. By partaking in the synthesis of phenylalanine, N also directly impacts a central plant metabolic ‘hub’—the phenylpropanoid pathway—from which important classes of molecules are formed, notably monolignols, flavonoids and other types of polyphenols. In this review, an updated analysis is provided on the impact that N has on the multipurpose crop hemp (Cannabis sativa L.) due to its renewed interest as a multipurpose crop able to satisfy the needs of a bioeconomy. The hemp stalk provides both woody and cellulosic fibers used in construction and for biocomposites; different organs (leaves/flowers/roots) are sources of added-value secondary metabolites, namely cannabinoids, terpenes, flavonoids, and lignanamides. We survey the available literature data on the impact of N in hemp and highlight the importance of studying those genes responding to both N nutrition and abiotic stresses. Available hemp transcriptomic datasets obtained on plants subjected to salt and drought are here analyzed using Gene Ontology (GO) categories related to N metabolism. The ultimate goal is to shed light on interesting candidate genes that can be further studied in hemp varieties growing under different N feeding conditions and showing high biomass yield and secondary metabolite production, even under salinity and drought. Full article
Show Figures

Figure 1

15 pages, 2151 KiB  
Article
Effect οf Genotype and Growing Year on the Nutritional, Phytochemical, and Antioxidant Properties of Industrial Hemp (Cannabis sativa L.) Seeds
by Maria Irakli, Eleni Tsaliki, Apostolos Kalivas, Fotios Kleisiaris, Eirini Sarrou and Catherine M Cook
Antioxidants 2019, 8(10), 491; https://doi.org/10.3390/antiox8100491 - 17 Oct 2019
Cited by 171 | Viewed by 10164
Abstract
Cannabis sativa L. seeds have been an important source of protein, oil, and dietary fiber for human and animals. Currently, there is a growing interest in the commercial products of these seeds, which are recognized as a legitimate source of medicaments, cosmeceuticals, and [...] Read more.
Cannabis sativa L. seeds have been an important source of protein, oil, and dietary fiber for human and animals. Currently, there is a growing interest in the commercial products of these seeds, which are recognized as a legitimate source of medicaments, cosmeceuticals, and nutraceuticals. The objective of this study was to investigate the nutritional, phytochemical composition, and antioxidant properties of seeds from seven hemp cultivars grown in Greece for three consecutive years. All the measured parameters strongly varied under the influence of growing year and genotype. In particular, protein, oil, and carbohydrates’ content of hemp seeds as well as fatty acids’ composition were mainly affected by genotype, whereas the growing year had a major effect on phytochemical components and antioxidant activity, which was determined by the 2,2′-azino-bis (3-ethylbenzthiazoline sulfonate) (ABTS) and ferric-reducing antioxidant power (FRAP) assays. Moreover, a predominant effect of the year was observed for phenolic profiles as determined by high-performance liquid chromatography and total carotenoids’ content. This study suggests that hemp seeds could be a promising food crop as a result of their high nutritive traits and antioxidant potential. A comparison of the studied cultivars, showed that Finola seeds had the highest oil and protein contents and, thus, appeared to be the most promising cultivar for cultivation in Greece. Full article
Show Figures

Figure 1

13 pages, 2132 KiB  
Article
Cannabisin F from Hemp (Cannabis sativa) Seed Suppresses Lipopolysaccharide-Induced Inflammatory Responses in BV2 Microglia as SIRT1 Modulator
by Shanshan Wang, Qian Luo and Peihong Fan
Int. J. Mol. Sci. 2019, 20(3), 507; https://doi.org/10.3390/ijms20030507 - 25 Jan 2019
Cited by 59 | Viewed by 10091
Abstract
Hemp seed (Fructus cannabis) is rich in lignanamides, and initial biological screening tests showed their potential anti-inflammatory and anti-oxidative capacity. This study investigated the possible effects and underlying mechanism of cannabisin F, a hempseed lignanamide, against inflammatory response and oxidative stress in lipopolysaccharide [...] Read more.
Hemp seed (Fructus cannabis) is rich in lignanamides, and initial biological screening tests showed their potential anti-inflammatory and anti-oxidative capacity. This study investigated the possible effects and underlying mechanism of cannabisin F, a hempseed lignanamide, against inflammatory response and oxidative stress in lipopolysaccharide (LPS)-stimulated BV2 microglia cells. Cannabisin F suppressed the production and the mRNA levels of pro-inflammatory mediators such as interleukin 6 (IL-6) and tumor necrosis factor α (TNF-α) in a concentration-dependent manner in LPS-stimulated BV2 microglia cell. Furthermore, cannabisin F enhanced SIRT1 expression and blocked LPS-induced NF-κB (Nuclear factor kappa B) signaling pathway activation by inhibiting phosphorylation of IκBα (Inhibit proteins of nuclear factor kappaB) and NF-κB p65. And the SIRT1 inhibitor EX527 significantly inhibited the effect of cannabisin F on pro-inflammatory cytokines production, suggesting that the anti-inflammatory effects of cannabisin F are SIRT1-dependent. In addition, cannabisin F reduced the production of cellular reactive oxygen species (ROS) and promoted the expression of Nrf2 (Nuclear factor erythroid-2 related factor 2) and HO-1 (Heme Oxygenase-1), suggesting that the anti-oxidative effects of cannabisin F are related to Nrf2 signaling pathway. Collectively, these results suggest that the neuro-protection effect of cannabisin F against LPS-induced inflammatory response and oxidative stress in BV2 microglia cells involves the SIRT1/NF-κB and Nrf2 pathway. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Graphical abstract

8 pages, 784 KiB  
Article
A New Lignanamide from the Root of Lycium yunnanense Kuang and Its Antioxidant Activity
by Xin-Heng Zheng, Yuan-Peng Huang, Qiu-Ping Liang, Wei Xu, Ting Lan and Guang-Xiong Zhou
Molecules 2018, 23(4), 770; https://doi.org/10.3390/molecules23040770 - 27 Mar 2018
Cited by 19 | Viewed by 4249
Abstract
A new lignanamide (1), lyciumamide K, together with four known analogues (25), was isolated from the root of Lycium yunnanense Kuang. Based on HR-ESI-MS, NMR spectral data and quantum chemistry ECD calculations, the structure of this new [...] Read more.
A new lignanamide (1), lyciumamide K, together with four known analogues (25), was isolated from the root of Lycium yunnanense Kuang. Based on HR-ESI-MS, NMR spectral data and quantum chemistry ECD calculations, the structure of this new compound was confirmed, including its absolute configuration. Evaluation of the antioxidant activity of compounds 15 in the oxygen radical absorption capacity (ORAC) assay showed that they all exhibited significant antioxidant activities. Particularly, compound 1 showed the best activity with ORAC values (U/mol) of 7.90 ± 0.52. Thus, the new lignanamide may be a good source of bioavtive and protective compounds. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

Back to TopTop