Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (109)

Search Parameters:
Keywords = lifetime of the electronic product

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2073 KiB  
Article
Global Supply of Secondary Lithium from Lithium-Ion Battery Recycling
by Carolin Kresse, Britta Bookhagen, Laura Buarque Andrade and Max Frenzel
Recycling 2025, 10(4), 122; https://doi.org/10.3390/recycling10040122 - 20 Jun 2025
Viewed by 894
Abstract
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., [...] Read more.
The recycling of lithium-ion batteries is picking up rather slowly, although recent rapid growth in consumption and increasing prevalence of battery electric vehicles have increased the quantity of recoverable material from past years of production. Yet, the diversity of different product types i.e., chemistries and product life spans complicates the recovery of raw materials. At present, large-scale industrial recycling of lithium-ion batteries employs (1) pyrometallurgy, with downstream hydrometallurgy for recovery of refined metals/salts; and (2) hydrometallurgy, requiring upstream mechanical shredding of cells and/or modules. Regulatory requirements, especially in Europe, and the high industry concentration along the lithium-ion battery value chain drive recycling efforts forward. The present study aims to quantify the potential contribution of 2nd lithium from recycling to battery production on a global and European scale up to 2050. The overall recycling output of lithium in any given year depends on the interactions between several different factors, including past production, battery lifetime distributions, and recovery rates, all of which are uncertain. The simplest way to propagate input uncertainties to the final results is to use Monte Carlo-type simulations. Calculations were done separately for EVs and portable batteries. The overall supply of lithium from recycling is the sum of the contributions from EVs and portable electronics from both the EU and the RoW in each battery production scenario. Results show a total global supply of recycled lithium below 20% in each scenario until 2050. On the EU level, the contribution of recycled lithium may reach up to 50% due to the high collection and recovery rate targets. Full article
(This article belongs to the Special Issue Lithium-Ion and Next-Generation Batteries Recycling)
Show Figures

Figure 1

20 pages, 494 KiB  
Article
Review and Novel Framework with Hui–Walter Method and Bayesian Approach for Estimation of Uncertain Remaining Value in Refurbished Products
by Ieva Dundulienė and Robertas Alzbutas
Sustainability 2025, 17(12), 5511; https://doi.org/10.3390/su17125511 - 15 Jun 2025
Viewed by 443
Abstract
Consumers’ growing interest in sustainability and the consideration of purchasing second-hand products present conditions for developing and improving a new method for Remaining Value (RV) estimation. The remaining value refers to the value of an end-of-life product that has been inspected, repaired, if [...] Read more.
Consumers’ growing interest in sustainability and the consideration of purchasing second-hand products present conditions for developing and improving a new method for Remaining Value (RV) estimation. The remaining value refers to the value of an end-of-life product that has been inspected, repaired, if necessary, and prepared for resale. Through the literature review, the main blockers, trustworthiness, price, and quality, were identified as preventing consumers from purchasing used products. Trustworthiness could be ensured by evaluating used products in an automated and model-based manner. To enhance consumers’ confidence, this study proposes a novel framework to assess the remaining value of non-new products by incorporating the diagnostic test results, even in the absence of a gold standard for model comparison and evaluation. This research expands the application of the Hui–Walter method beyond medical diagnostics by adapting it to sustainability-focused estimation. The proposed framework is designed to assist consumers in making data-informed purchase decisions and support retailers in assessing the market price while contributing to the environmental pillar of sustainability by reducing waste and resource consumption and extending the product lifetime. This work aligns with the United Nations Sustainable Development Goals 12 (Responsible Consumption and Production) and 13 (Climate Action) by providing quantifiable methods to extend the product lifecycle and minimize electronic waste. While this study focuses on developing the theoretical framework, future work will apply and validate this framework using empirical case studies and compare it with the remaining value estimation models. Full article
(This article belongs to the Special Issue Data-Driven Sustainable Development: Techniques and Applications)
Show Figures

Figure 1

16 pages, 3980 KiB  
Article
Z-Scheme ZIF-8/Ag3PO4 Heterojunction Photocatalyst for High-Performance Antibacterial Food Packaging Films
by Qingyang Zhou, Zhuluni Fang, Junyi Wang, Wenbo Zhang, Yihan Liu, Miao Yu, Zhuo Ma, Yunfeng Qiu and Shaoqin Liu
Materials 2025, 18(11), 2544; https://doi.org/10.3390/ma18112544 - 28 May 2025
Viewed by 486
Abstract
Food spoilage caused by microbial contamination remains a global challenge, driving demand for sustainable antibacterial packaging. Conventional photocatalytic materials suffer from limited spectral response, rapid charge recombination, and insufficient reactive oxygen species (ROS) generation under visible light. Here, a Z-scheme heterojunction was constructed [...] Read more.
Food spoilage caused by microbial contamination remains a global challenge, driving demand for sustainable antibacterial packaging. Conventional photocatalytic materials suffer from limited spectral response, rapid charge recombination, and insufficient reactive oxygen species (ROS) generation under visible light. Here, a Z-scheme heterojunction was constructed by coupling zeolitic imidazolate framework-8 (ZIF-8) with Ag3PO4, achieving dual-spectral absorption and spatial charge separation. The directional electron transfer from Ag3PO4’s conduction band to ZIF-8 effectively suppresses electron-hole recombination, prolonging carrier lifetimes and amplifying ROS production (·O2/·OH). Synergy with Ag+ release further enhances bactericidal efficacy. Incorporated into a cellulose acetate matrix (CAM), the ZIF-8/Ag3PO4/CAM film demonstrates 99.06% antibacterial efficiency against meat surface microbiota under simulated sunlight, alongside high transparency. This study proposes a Z-scheme heterojunction strategy to maximize ROS generation efficiency and demonstrates a scalable fabrication approach for active food packaging materials, effectively targeting microbial contamination control and shelf-life prolongation. Full article
Show Figures

Graphical abstract

19 pages, 2394 KiB  
Article
Three-Dimensional Printed MXene@PANI Hierarchical Architecture for High-Performance Micro-Supercapacitors
by Anyi Zhang, Yiming Wang, Haidong Yu and Yabin Zhang
Materials 2025, 18(10), 2277; https://doi.org/10.3390/ma18102277 - 14 May 2025
Viewed by 564
Abstract
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional [...] Read more.
The advent of the Internet of Things has boosted portable and wearable miniature electronics, especially micro-supercapacitors (MSCs) with excellent integrated performance as well as high-power density and a long lifetime. However, the rational design of electrode material formulations and the construction of three-dimensional (3D) structured electrodes with scalable and cost-effective fabrication remains an arduous task for improving the energy density of MSCs to meet all industrial sector requirements, such as the mass-production of microscale structures, a lasting power supply, and safety. To address these challenges, combining the respective capacitance merits of MXenes and polyaniline (PANI), we propose a constructing strategy for the preparation of a 3D MXene@PANI hierarchical architecture consisting of one-dimensional (1D) PANI nanofibers grown on two-dimensional (2D) Ti3C2 MXene nanosheets via extrusion-based 3D printing. Such a 3D architecture not only achieves a high loading mass of MSC electrodes prior to conventional planar MSCs for abundant active site exposure, but it also overcomes the restacking of MXene nanosheets accounting for sluggish ionic kinetics. These features enable the resulting MSCs to deliver excellent electrochemical properties, including a high volumetric capacitance of 1638.3 mF/cm3 and volumetric energy density of 328.2 mWh/cm3. This power supply ability is further demonstrated by lighting up a blue bulb or powering an electronic thermometer. This study provides a promising design strategy of the architecture of MXene@PANI composites for high-performance MSCs with 3D printing technology. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Graphical abstract

18 pages, 9250 KiB  
Article
Defect-Engineered Z-Scheme Heterojunction of Fe-MOFs/Bi2WO6 for Solar-Driven CO2 Conversion: Synergistic Surface Catalysis and Interfacial Charge Dynamics
by Ting Liu, Yun Wu, Hao Wang, Jichang Lu and Yongming Luo
Nanomaterials 2025, 15(8), 618; https://doi.org/10.3390/nano15080618 - 17 Apr 2025
Viewed by 656
Abstract
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic [...] Read more.
The urgent need for sustainable CO2 conversion technologies has driven the development of advanced photocatalysts that harness solar energy. This study employs a CTAB-assisted solvothermal method to fabricate a Z-scheme heterojunction Fe-MOFs/VO-Bi2WO6 (FM/VO-BWO) for photocatalytic CO2 reduction. Positron annihilation lifetime spectroscopy (PALS) was employed to confirm the existence of oxygen vacancies, while spherical aberration-corrected transmission electron microscope (STEM) characterization verified the successful construction of heterointerfaces. X-ray absorption fine structure (XAFS) spectra confirmed that the defect configuration and heterostructure changed the surface chemical valence state. The optimized 1.0FM/VO-BWO composite demonstrated exceptional photocatalytic performance, achieving CO and CH4 yields of 60.48 and 4.3 μmol/g, respectively, under visible-light 11.8- and 1.5-fold enhancements over pristine Bi2WO6. The enhanced performance is attributed to oxygen vacancy-induced active sites facilitating CO₂ adsorption/activation. In situ molecular spectroscopy confirmed the formation of critical CO2-derived intermediates (COOH* and CHO*) through surface interactions involving four-coordinated and two-coordinated hydrogen-bonded water molecules. Furthermore, the accelerated interfacial charge transfer efficiency mediated by the Z-scheme heterojunction has been conclusively demonstrated. This work establishes a paradigm for defect-mediated heterojunction design, offering a sustainable route for solar fuel production. Full article
Show Figures

Figure 1

16 pages, 5403 KiB  
Article
Boosting Visible-Light-Driven Hydrogen Evolution Enabled by Iodine-Linked Magnetically Curved Graphene with Mobius-like Electronic Paths
by Liangjun Cai, Hongxia Liu and Xiaoxiao Yan
Molecules 2025, 30(6), 1302; https://doi.org/10.3390/molecules30061302 - 13 Mar 2025
Viewed by 549
Abstract
Materials with high electron transfer performance remain a key focus in photocatalytic research, as they can effectively promote the separation of photogenerated carriers and enhance the utilization efficiency of photogenerated electrons. To enhance the effective utilization of photogenerated electrons, the MSIG material was [...] Read more.
Materials with high electron transfer performance remain a key focus in photocatalytic research, as they can effectively promote the separation of photogenerated carriers and enhance the utilization efficiency of photogenerated electrons. To enhance the effective utilization of photogenerated electrons, the MSIG material was prepared by incorporating the iodine clusters and magnetic Fe3O4 into the as-synthesized crumpled graphene oxide (CGO) to construct Möbius-like electronic transmission pathways. The introduction of magnetic groups optimized the spin orientation of electrons, facilitating directional electron transport and thereby enhancing the photocatalytic efficiency of the material. Experimental results reveal that, in visible light-driven hydrogen production reactions, the eosin Y (EY)-sensitized Pt-Fe3O4-MSIG catalyst exhibits outstanding catalytic performance, with a hydrogen production rate of 1.48 mL/h, which is 15 times higher than that of the Pt-Fe3O4 catalyst. Photoelectrochemical analyses show a significant increase in the catalyst’s fluorescence lifetime, attributed to the Möbius strip-like electron transport channels within the material. Theoretical calculations further support this by demonstrating that the bandgap widening of the CGO reduces the recombination probability of photogenerated carriers, thereby improving their average lifetime. This study offers a novel approach for the design of visible-light-driven photocatalytic materials. Full article
(This article belongs to the Special Issue Recent Advances in Transition Metal Catalysis, 2nd Edition)
Show Figures

Figure 1

21 pages, 3908 KiB  
Review
Stability Improvement of Irradiated Polymer Composites by Inorganic Compounds—A Pertinent Solution with Respect to Phenolic Antioxidants
by Traian Zaharescu and Ademar B. Lugāo
J. Compos. Sci. 2025, 9(1), 47; https://doi.org/10.3390/jcs9010047 - 19 Jan 2025
Cited by 1 | Viewed by 1273
Abstract
The long-term usage of polymer products necessitates addressing the appropriate preservation of their low oxidation state that extends the warranty period. The addition of pertinent stabilization components into the composite formulations (synthesis and natural antioxidants, pristine and doped oxides, clays or couples of [...] Read more.
The long-term usage of polymer products necessitates addressing the appropriate preservation of their low oxidation state that extends the warranty period. The addition of pertinent stabilization components into the composite formulations (synthesis and natural antioxidants, pristine and doped oxides, clays or couples of them) produces an improvement in the kinetic parameters characterizing the accelerated degradation that occurs during high-energy exposures. The competition between the material ageing and the mitigation of oxidation is controlled by the protection efficiency. In this paper, the main advantages of inorganic structures in comparison to classical organic antioxidants are emphasized. A significant improvement in stability, simultaneously associated with the enhancing of functional characteristics, the lack of migration, low cost and easy accessibility, make the reevaluation of certain fillers as stabilizers appropriate. The correlation between the functional properties and the filler nature in polymer materials may be reconsidered for the assessment of the participation capability of inorganic structures in the inhibition of oxidation by the inactivation of free radicals. The lifetimes of degradation intermediates extended by the activities of inorganic compounds are increased by means of electrical interactions involving the unpaired electrons of molecular fragments. These physical contributions are reflected in chemical stability. An essential feature for the presented inorganic options is a strong impact on the recycling technologies of polymers by radiation processing. Plastic products, including all categories of macromolecular materials, can gain an increased durability through the inorganic alternative of protection. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

15 pages, 17109 KiB  
Article
Investigations on the Performance of a 5 mm CdTe Timepix3 Detector for Compton Imaging Applications
by Juan S. Useche Parra, Gerardo Roque, Michael K. Schütz, Michael Fiederle and Simon Procz
Sensors 2024, 24(24), 7974; https://doi.org/10.3390/s24247974 - 13 Dec 2024
Cited by 1 | Viewed by 1067
Abstract
Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes [...] Read more.
Nuclear power plant decommissioning requires the rapid and accurate classification of radioactive waste in narrow spaces and under time constraints. Photon-counting detector technology offers an effective solution for the quick classification and detection of radioactive hotspots in a decommissioning environment. This paper characterizes a 5 mm CdTe Timepix3 detector and evaluates its feasibility as a single-layer Compton camera. The sensor’s electron mobility–lifetime product and resistivity are studied across bias voltages ranging from −100 V to −3000 V, obtaining values of μeτe = (1.2 ± 0.1) × 10−3 cm2V−1, and two linear regions with resistivities of ρI=(5.8±0.2) GΩ cm and ρII=(4.1±0.1) GΩ cm. Additionally, two calibration methodologies are assessed to determine the most suitable for Compton applications, achieving an energy resolution of 16.3 keV for the 137Cs photopeak. The electron’s drift time in the sensor is estimated to be (122.3 ± 7.4) ns using cosmic muons. Finally, a Compton reconstruction of two simultaneous point-like sources is performed, demonstrating the detector’s capability to accurately locate radiation hotspots with a ∼51 cm resolution. Full article
(This article belongs to the Special Issue Recent Advances in X-Ray Sensing and Imaging)
Show Figures

Figure 1

12 pages, 3349 KiB  
Communication
Accelerated Life Tests for Time-Dependent Response Characterization of Functionalized Piezoelectric Microcantilever-Based Gas Sensors
by Lawrence Nsubuga and Roana de Oliveira Hansen
Electronics 2024, 13(22), 4525; https://doi.org/10.3390/electronics13224525 - 18 Nov 2024
Cited by 1 | Viewed by 903
Abstract
This article explores the accelerated lifetime test approach to characterize the time-dependent response of a piezoelectrically driven microcantilever (PD-MC) based gas sensor. The novelty here relies on demonstrating how accelerated lifetime tests can be useful to differentiate sensing mechanisms for non-linear gas sensors. [...] Read more.
This article explores the accelerated lifetime test approach to characterize the time-dependent response of a piezoelectrically driven microcantilever (PD-MC) based gas sensor. The novelty here relies on demonstrating how accelerated lifetime tests can be useful to differentiate sensing mechanisms for non-linear gas sensors. The results show the determination of the sensor’s optimum operation time while maintaining result validity. The approach is demonstrated for 1,5-diaminopentane (cadaverine), a volatile organic compound (VOC) whose concentration in meat and fish products has been proven viable for determining the shelf life. A PD-MC functionalized with a cadaverine-specific binder was therefore incorporated into a hand-held electronic nose, and the response was found to be highly reliable within a specific resonance frequency shift, enabling the accurate prediction of meat and fish expiration dates. To identify the limits of detection in terms of cadaverine concentration and sensor lifetime, this study applies the results of accelerated life tests into a Weibull distribution analysis to extract the expected time to failure. For the accelerated life tests, a functionalized PD-MC was exposed to high concentrations of cadaverine, i.e., 252.3 mg/kg, 335.82 mg/kg, and 421.08 mg/kg, compared to the nominal concentration of 33 mg/kg observed in meat and fish samples. Furthermore, we demonstrate the differentiation of the response mechanisms of the system accruing from the concentration-dependent interaction of cadaverine with the binder. This enables the determination of the upper limit of the analyte concentration for a stable response. The findings suggest that the functionalized PD-MC sensor exhibits a linear and predictable response when exposed to a standard cadaverine concentration of 33 mg/kg for up to 93.01 min. Full article
(This article belongs to the Special Issue Electronic Nose: From Fundamental Research to Applications)
Show Figures

Figure 1

16 pages, 2049 KiB  
Article
Potentiometric Electronic Tongue for the Evaluation of Multiple-Unit Pellet Sprinkle Formulations of Rosuvastatin Calcium
by Patrycja Ciosek-Skibińska, Krzysztof Cal, Daniel Zakowiecki and Joanna Lenik
Materials 2024, 17(20), 5016; https://doi.org/10.3390/ma17205016 - 14 Oct 2024
Cited by 1 | Viewed by 1325
Abstract
Sprinkle formulations represent an interesting genre of medicinal products. A frequent problem, however, is the need to mask the unpleasant taste of these drug substances. In the present work, we propose the use of a novel sensor array based on solid-state ion-selective electrodes [...] Read more.
Sprinkle formulations represent an interesting genre of medicinal products. A frequent problem, however, is the need to mask the unpleasant taste of these drug substances. In the present work, we propose the use of a novel sensor array based on solid-state ion-selective electrodes to evaluate the taste-masking efficiency of rosuvastatin (ROS) sprinkle formulations. Eight Multiple Unit Pellet Systems (MUPSs) were analyzed at two different doses (API_50) and (API_10), as well as pure Active Pharmaceutical Ingredient (API) as a bitter standard. Calcium phosphate-based starter pellets were coated with the mixture containing rosuvastatin. Some of them were additionally coated with hydroxypropyl methylcellulose, which was intended to separate the bitter substance and prevent it from coming into contact with the taste buds. The sensor array consisted of 16 prepared sensors with a polymer membrane that had a different selectivity towards rosuvastatin calcium. The main analytical parameters (sensitivity, selectivity, response time, pH dependence of potential, drift of potential, lifetime) of the constructed ion-selective electrodes sensitive for rosuvastatin were determined. The signals from the sensors array recorded during the experiments were processed using Principal Component Analysis (PCA). The results obtained, i.e., the chemical images of the pharmaceutical samples, indicated that the electronic tongue composed of the developed solid-state electrodes provided respective attributes as sensor signals, enabling both of various kinds of ROS pellets to be distinguished and their similarity to ROS bitterness standards to be tested. Full article
Show Figures

Figure 1

17 pages, 4604 KiB  
Article
The Influence of Energy Consumption and the Environmental Impact of Electronic Components on the Structures of Mobile Robots Used in Logistics
by Constantin-Adrian Popescu, Severus-Constantin Olteanu, Ana-Maria Ifrim, Catalin Petcu, Catalin Ionut Silvestru and Daniela-Mariana Ilie
Sustainability 2024, 16(19), 8396; https://doi.org/10.3390/su16198396 - 26 Sep 2024
Cited by 1 | Viewed by 2441
Abstract
Industrial development has implicitly led to the development of new systems that increase the ability to provide services and products in real time. Autonomous mobile robots are considered some of the most important tools that can help both industry and society. These robots [...] Read more.
Industrial development has implicitly led to the development of new systems that increase the ability to provide services and products in real time. Autonomous mobile robots are considered some of the most important tools that can help both industry and society. These robots offer a certain autonomy that makes them indispensable in industrial activities. However, some elements of these robots are not yet very well outlined, such as their construction, their lifetime and energy consumption, and the environmental impact of their activity. Within the context of European regulations (here, we focus on the Green Deal and the growth in greenhouse gas emissions), any industrial activity must be analyzed and optimized so that it is efficient and does not significantly impact the environment. The added value of this paper is its examination of the activities carried out by mobile robots and the impact of their electronic components on the environment. The proposed analysis employs, as a central point, an analysis of mobile robots from the point of view of their electronic components and the impact of their activity on the environment in terms of energy consumption, as evaluated by calculating the emission of greenhouse gases (GHGs). The way in which the activity of a robot impacts the environment was established throughout the economic flow, as well as by providing possible methods of reducing this impact by optimizing the robot’s activity. The environmental impact of a mobile robot, in regard to its electronic components, will also be analyzed when the period of operation is completed. Full article
(This article belongs to the Special Issue Sustainability and Innovation in SMEs)
Show Figures

Figure 1

13 pages, 7474 KiB  
Article
Construction of ZnCdS Quantum-Dot-Modified CeO2 (0D–2D) Heterojunction for Enhancing Photocatalytic CO2 Reduction and Mechanism Insight
by Junzhi Yan, Yuming Sun, Junxi Cai, Ming Cai, Bo Hu, Yan Yan, Yue Zhang and Xu Tang
Catalysts 2024, 14(9), 599; https://doi.org/10.3390/catal14090599 - 6 Sep 2024
Cited by 5 | Viewed by 1783
Abstract
It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using [...] Read more.
It is important to improve the separation ability of photogenerated electrons and the adsorption capacity of carbon dioxide (CO2) for efficient photoreduction of CO2. Here, we synthesized ZnCdS quantum dots (ZCS-QDs) and cerium dioxide nanosheets (CeO2) using the solvothermal method and calcination method. We combined CeO2 and ZCS-QDs to effectively enhance the charge separation efficiency, and the lifetime of photogenerated electrons was increased 4.5 times. The CO evolution rate of the optimized composite (ZCS-QDs/CeO2) was up to 495.8 μmol g−1 h−1, and it had 100% product selectivity. In addition, the stability remained high after five cycles. The CO2 adsorption capacity of the catalyst surface was observed by in situ FTIR. The test results showed that improving CO2 capture ability and promoting photogenic electron separation had positive effects on enhancing photoreduction of CO2. This study provides a reference for constructing a zero-dimensional–two-dimensional (0D–2D) heterojunction and explores potential CO2 reduction reaction mechanisms. Full article
(This article belongs to the Special Issue Mineral-Based Composite Catalytic Materials)
Show Figures

Graphical abstract

27 pages, 6045 KiB  
Article
Nanostructured Molecular–Network Arsenoselenides from the Border of a Glass-Forming Region: A Disproportionality Analysis Using Complementary Characterization Probes
by Oleh Shpotyuk, Malgorzata Hyla, Adam Ingram, Yaroslav Shpotyuk, Vitaliy Boyko, Pavlo Demchenko, Renata Wojnarowska-Nowak, Zdenka Lukáčová Bujňáková and Peter Baláž
Molecules 2024, 29(16), 3948; https://doi.org/10.3390/molecules29163948 - 21 Aug 2024
Cited by 2 | Viewed by 1222
Abstract
Binary AsxSe100−x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry–wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by [...] Read more.
Binary AsxSe100−x alloys from the border of a glass-forming region (65 < x < 70) subjected to nanomilling in dry and dry–wet modes are characterized by the XRPD, micro-Raman scattering (micro-RS) and revised positron annihilation lifetime (PAL) methods complemented by a disproportionality analysis using the quantum–chemical cluster modeling approach. These alloys are examined with respect to tetra-arsenic biselenide As4Se2 stoichiometry, realized in glassy g-As65Se35, glassy–crystalline g/c-As67Se33 and glassy–crystalline g/c-As70Se30. From the XRPD results, the number of rhombohedral As and cubic arsenolite As2O3 phases in As-Se alloys increases after nanomilling, especially in the wet mode realized in a PVP water solution. Nanomilling-driven amorphization and reamorphization transformations in these alloys are identified by an analysis of diffuse peak halos in their XRPD patterning, showing the interplay between the levels of a medium-range structure (disruption of the intermediate-range ordering at the cost of an extended-range one). From the micro-RS spectroscopy results, these alloys are stabilized by molecular thioarsenides As4Sen (n = 3, 4), regardless of their phase composition, remnants of thioarsenide molecules destructed under nanomilling being reincorporated into a glass network undergoing a polyamorphic transition. From the PAL spectroscopy results, volumetric changes in the wet-milled alloys with respect to the dry-milled ones are identified as resulting from a direct conversion of the bound positron–electron (Ps, positronium) states in the positron traps. Ps-hosting holes in the PVP medium appear instead of positron traps, with ~0.36–0.38 ns lifetimes ascribed to multivacancies in the As-Se matrix. The superposition of PAL spectrum peaks and tails for pelletized PVP, unmilled, dry-milled, and dry–wet-milled As-Se samples shows a spectacular smoothly decaying trend. The microstructure scenarios of the spontaneous (under quenching) and activated (under nanomilling) decomposition of principal network clusters in As4Se2-bearing arsenoselenides are recognized. Over-constrained As6·(2/3) ring-like network clusters acting as pre-cursors of the rhombohedral As phase are the main products of this decomposition. Two spontaneous processes for creating thioarsenides with crystalline counterparts explain the location of the glass-forming border in an As-Se system near the As4Se2 composition, while an activated decomposition process for creating layered As2Se3 structures is responsible for the nanomilling-driven molecular-to-network transition. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Physical Chemistry, 2nd Edition)
Show Figures

Graphical abstract

27 pages, 8897 KiB  
Review
Engineering of g-C3N4 for Photocatalytic Hydrogen Production: A Review
by Yachao Yan, Qing Meng, Long Tian, Yulong Cai, Yujuan Zhang and Yingzhi Chen
Int. J. Mol. Sci. 2024, 25(16), 8842; https://doi.org/10.3390/ijms25168842 - 14 Aug 2024
Cited by 12 | Viewed by 4492
Abstract
Graphitic carbon nitride (g-C3N4)-based photocatalysts have garnered significant interest as a promising photocatalyst for hydrogen generation under visible light, to address energy and environmental challenges owing to their favorable electronic structure, affordability, and stability. In spite of [...] Read more.
Graphitic carbon nitride (g-C3N4)-based photocatalysts have garnered significant interest as a promising photocatalyst for hydrogen generation under visible light, to address energy and environmental challenges owing to their favorable electronic structure, affordability, and stability. In spite of that, issues such as high charge carrier recombination rates and low quantum efficiency impede its broader application. To overcome these limitations, structural and morphological modification of the g-C3N4-based photocatalysts is a novel frontline to improve the photocatalytic performance. Therefore, we briefly summarize the current preparation methods of g-C3N4. Importantly, this review highlights recent advancements in crafting high-performance g-C3N4-based photocatalysts, focusing on strategies like elemental doping, nanostructure design, bandgap engineering, and heterostructure construction. Notably, sophisticated doping techniques have propelled hydrogen production rates to a 104-fold increase. Ingenious nanostructure designs have expanded the surface area by a factor of 26, concurrently extending the fluorescence lifetime of charge carriers by 50%. Moreover, the strategic assembly of heterojunctions has not only elevated charge carrier separation efficiency but also preserved formidable redox properties, culminating in a dramatic hundredfold surge in hydrogen generation performance. This work provides a reliable and brief overview of the controlled modification engineering of g-C3N4-based photocatalyst systems, paving the way for more efficient hydrogen production. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

15 pages, 1711 KiB  
Article
Fuzzy Evaluation Model for Lifetime Performance Using Type-I Censoring Data
by Kuo-Ching Chiou, Tsun-Hung Huang, Kuen-Suan Chen and Chun-Min Yu
Mathematics 2024, 12(13), 1935; https://doi.org/10.3390/math12131935 - 21 Jun 2024
Cited by 2 | Viewed by 1209
Abstract
As global warming becomes increasingly serious, humans start to consider how to coexist with the natural environment. People become more and more aware of environmental protection and sustainable development. Therefore, in the pursuit of economic growth, it has become a consensus that enterprises [...] Read more.
As global warming becomes increasingly serious, humans start to consider how to coexist with the natural environment. People become more and more aware of environmental protection and sustainable development. Therefore, in the pursuit of economic growth, it has become a consensus that enterprises should be responsible for the social and ecological environment. Regarding the manufacturing of electronic devices, as long as both component production quality and assembly quality are ensured, consumers can be provided with high-quality, safe, and efficient products. In light of this trend, enhancing product availability and reliability can reduce costs and carbon emissions resulting from repairing or replacing components, thus becoming a vital factor for corporate and environmental sustainability. Accordingly, enterprises enhance their economic benefits as well as have the effects of energy conservation and waste reduction by extending products’ service lifetime and increasing their added value. According to several studies, it takes a long time to retrieve electronic products’ lifetime data. Moreover, acquiring complete samples is often challenging. Consequently, when analyzing real cases, samples are usually collected using censoring techniques. The type-I right censoring data is suitable for industrial processes. Thus, this study utilized type-I right censoring sample data to estimate the lifetime performance index. It usually takes a large amount of time to access lifetime data for electronic products and it is often impossible to obtain complete samples since the size of the sample is usually small. Hence, to avoid misjudgment caused by sampling errors, this study followed suggestions from existing research and applied fuzzy tests built on confidence intervals to establish a fuzzy evaluation model for the lifetime performance index. This model helps relevant electronic industries not only evaluate the lifetime of their electronic components but also instantly seize opportunities for improvement. Full article
Show Figures

Figure 1

Back to TopTop