Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = life cycle energy analysis (LCEA)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1669 KB  
Article
Assessing the Energy and Economic Performance of Green and Cool Roofs: A Life Cycle Approach
by Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2025, 17(13), 5782; https://doi.org/10.3390/su17135782 - 23 Jun 2025
Viewed by 465
Abstract
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) [...] Read more.
Green and cool roofs have significant potential to reduce energy consumption in buildings, but high initial costs and the need for local adaptation limit their adoption. This study aims to compare the life cycle energy assessment (LCEA) and life cycle cost analysis (LCCA) of green, cool, and standard (fibre cement) roofs in three Brazilian cities with different climatic and economic contexts. Computer simulations were carried out on a multifamily residential building model to assess the energy performance of the roofs. The simulation results and literature data were used to estimate the roofs’ energy consumption and cost over the life cycle. Over a 40-year life cycle, green and cool roofs reduced energy consumption by 13% to 22% compared to standard roofs. Cool roofs showed the lowest life cycle costs, while green roofs faced cost-effectiveness challenges due to high initial and maintenance costs. However, in areas with high energy demands and electricity tariffs, the life cycle cost of green roofs may be decreased. The study highlights the crucial role of material selection in embodied energy and emphasises the dominant impact of the operational phase on energy consumption and life cycle costs. These findings underscore the need for customised design strategies and localised assessments to support decision-making. Full article
(This article belongs to the Special Issue Green Construction Materials and Sustainability)
Show Figures

Figure 1

20 pages, 2430 KB  
Article
Optimal Design of Water Distribution System Using Improved Life Cycle Energy Analysis: Development of Optimal Improvement Period and Unit Energy Formula
by Yong min Ryu and Eui Hoon Lee
Water 2024, 16(22), 3300; https://doi.org/10.3390/w16223300 - 17 Nov 2024
Cited by 1 | Viewed by 1068
Abstract
Water distribution systems (WDSs) are crucial for providing clean drinking water, requiring an efficient design to minimize costs and energy usage. This study introduces an enhanced life cycle energy analysis (LCEA) model for an optimal WDS design, incorporating novel criteria for pipe maintenance [...] Read more.
Water distribution systems (WDSs) are crucial for providing clean drinking water, requiring an efficient design to minimize costs and energy usage. This study introduces an enhanced life cycle energy analysis (LCEA) model for an optimal WDS design, incorporating novel criteria for pipe maintenance and a new resilience index based on nodal pressure. The improved LCEA model features a revised unit energy formula and sets standards for pipe rehabilitation and replacement based on regional regulations. Applied to South Korea’s Goyang network, the model reduces energy expenditure by approximately 35% compared to the cost-based design. Unlike the cost-based design, the energy-based design achieves results that can relatively reduce energy when designing water distribution networks by considering recovered energy. This allows designers to propose designs that consume relatively less energy. Analysis using the new resilience index shows that the energy-based design outperforms the cost-based design in terms of pressure and service under most pipe failure scenarios. The implementation of the improved LCEA in real-world pipe networks, including Goyang, promises a practical life cycle-based optimal design. Full article
Show Figures

Figure 1

22 pages, 4730 KB  
Article
A Systematic Approach to Developing Sustainable Post-Disaster Shelters in the Southern Region of the United States
by Alka Khadka, Soojin Yoon, Richard G. Walker, Amy King Lewis and Yeonjin Bae
Buildings 2024, 14(8), 2536; https://doi.org/10.3390/buildings14082536 - 17 Aug 2024
Viewed by 2390
Abstract
This study aims to propose a sustainable shelter design involving energy savings, less environmental impact, and rapid construction. The structural design of the shelter is based on 3D-printing technology. Sustainability assessments, including life cycle analysis (LCA), life cycle energy assessment (LCEA), and energy [...] Read more.
This study aims to propose a sustainable shelter design involving energy savings, less environmental impact, and rapid construction. The structural design of the shelter is based on 3D-printing technology. Sustainability assessments, including life cycle analysis (LCA), life cycle energy assessment (LCEA), and energy justice of the designed shelter, were conducted to prove the sustainable shelter design. The outcomes of this study for several scenarios will not only allow decision-makers to design permanent shelters with maximized utilization of limited resources but also help local communities strengthen their ability to recover with minimal outside assistance post-disaster. Furthermore, residents can utilize the sustainable shelter to maintain critical functions, including business continuity and local business in emergencies. Full article
(This article belongs to the Special Issue Advanced Building Technologies for Energy Savings and Decarbonization)
Show Figures

Figure 1

20 pages, 1236 KB  
Article
Embodied Energy Coefficient Quantification and Implementation for an Energy-Conservative House in Thailand
by Nattaya Sangngamratsakul, Kuskana Kubaha and Siriluk Chiarakorn
Sustainability 2024, 16(10), 4045; https://doi.org/10.3390/su16104045 - 12 May 2024
Cited by 1 | Viewed by 2834
Abstract
The increasing rate of population growth and urban expansion has led to a higher demand for fossil fuels, which, in turn, directly generate greenhouse gas emissions into the atmosphere. These emissions contribute to environmental problems such as global warming and climate change. This [...] Read more.
The increasing rate of population growth and urban expansion has led to a higher demand for fossil fuels, which, in turn, directly generate greenhouse gas emissions into the atmosphere. These emissions contribute to environmental problems such as global warming and climate change. This study aims to present the total life-cycle energy analysis (LCEA) of a single-family detached house designed with an energy conservation approach. Using a cradle-to-grave scope, this study quantifies the embodied energy in six stages of the building’s life cycle, i.e., initial, transportation, construction, operational, recurrent, and demolition. An input–output (IO)-based method was employed to construct a Thailand-specific embodied energy coefficient for 36 key building materials. This coefficient was then used to quantify both the initial embodied energy and the recurrent embodied energy in this study. The case-study house was broken down into 13 building materials. Concrete was the most consumed material, followed by fiber–cement, steel, and timber, in that order. However, the results of the embodied energy distribution for these materials revealed that fiber–cement ranked first, accounting for 29%. Steel was next, at 21%, followed by concrete at 18%, and, finally, aluminum at 12%. The case-study house had an initial embodied energy of 7.99 GJ/m² and a total life-cycle energy consumption of 0.66 GJ/m²/year. This study provides valuable information on LCEA for residential buildings, fostering public understanding of energy conservation in the Thai context. Furthermore, this study’s results can be applied to establish energy conservation guidelines for residential buildings. These guidelines can help reduce energy resource depletion, carbon emissions, and environmental problems, ultimately contributing to Thailand’s goal of achieving carbon neutrality by 2050. Full article
Show Figures

Figure 1

22 pages, 4190 KB  
Article
Energy and Environmental Analysis of Renewable Energy Systems Focused on Biomass Technologies for Residential Applications: The Life Cycle Energy Analysis Approach
by Effrosyni Giama, Elli Kyriaki, Athanasios Papaevaggelou and Agis Papadopoulos
Energies 2023, 16(11), 4433; https://doi.org/10.3390/en16114433 - 31 May 2023
Cited by 10 | Viewed by 2564
Abstract
Sustainability and resilience are major challenges for the building sector in order to meet energy efficiency and low carbon emissions goals. Based on the defined and quantified targets of the EU climate change policy, Renewable Energy Systems (RESs) are among the top-priority measures [...] Read more.
Sustainability and resilience are major challenges for the building sector in order to meet energy efficiency and low carbon emissions goals. Based on the defined and quantified targets of the EU climate change policy, Renewable Energy Systems (RESs) are among the top-priority measures for accomplishing the target of decarbonization in buildings. Nevertheless, the choice of the type of RES is not a one-dimensional problem, and the optimal combination may not be unique. The aim of this paper is the energy and environmental evaluation of renewable energy technologies with emphasis on biomass and solar thermal systems for heating applications in residential buildings. More specifically, and aiming at the maximum possible contribution of renewable energy sources in the total final energy consumption for the needs of zero energy buildings, different scenarios are presented based on a Life Cycle Energy Analysis (LCEA) approach. The methodology is based on quantifying the environmental impacts (midpoint analysis), as well as endpoint analysis, in order to define the impact on human health, ecosystem damage, and resource depletion. The LCEA has been conducted, supported by the SimaPro tool, ensuring the environmental impact assessment result. A combination of RES technologies based on solar and biomass are examined and compared to conventional fossil fuel heating systems according to technical, energy, and environmental criteria. Finally, the energy system technologies were compared in correlation to a building’s thermal insulation level. The first set of simulations fulfilled the minimum thermal insulation requirements, according to the national energy performance regulation, whilst the second set of simulations was based on increased levels of insulation. The point of this analysis was to correlate the impact of thermal insulation to RES technologies’ contribution. The results determined that the best available energy solution, focusing on technical and environmental criteria, is the combination of biomass and solar thermal systems for covering the heating processes in residential buildings. More specifically, the combined biomass–solar system has a lower overall environmental impact, due to the reduction in gaseous pollutant emissions, as well as the reduction in the amount of used fuel. The reduction in the total environmental impact amounts to a percentage of approximately 43%. Full article
Show Figures

Figure 1

24 pages, 3287 KB  
Article
Assessment of Energy, Environmental and Economic Costs of Buildings’ Thermal Insulation–Influence of Type of Use and Climate
by António M. Raimundo, Afonso M. Sousa and A. Virgílio M. Oliveira
Buildings 2023, 13(2), 279; https://doi.org/10.3390/buildings13020279 - 18 Jan 2023
Cited by 13 | Viewed by 2908
Abstract
Among the aspects with major impacts on the energy and environmental performance of a building, the thermal insulation of the opaque elements of its envelope stands out. This work assesses the influence of the application of thermal insulation to the opaque elements of [...] Read more.
Among the aspects with major impacts on the energy and environmental performance of a building, the thermal insulation of the opaque elements of its envelope stands out. This work assesses the influence of the application of thermal insulation to the opaque elements of the building’s envelope on the thermal comfort conditions indoors; moreover, the influence of the thermal insulation on the energy, environmental, and economic costs over the building’s complete life cycle is evaluated. For this purpose, the three most commonly used thermal insulating materials (expanded polystyrene—EPS, extruded polystyrene—XPS, and mineral wool—MW), thicknesses between 0 (without insulation) and 40 cm, five climates (hot, warm, moderate, cold, and very cold), and six types of use (apartment, housing, clinic, school, bank branch, and supermarket) were considered. EPS reveals itself to be the most promising thermal insulation material, both in economic and environmental terms, so it was selected for this study. The EPS’ optimal thickness depends on the building’s type of use, the climate, and the perspective from which the assessment is carried out (energy, environmental, or economic). The results show that the economically optimal thicknesses of thermal insulation are significantly lower than the corresponding ones in environmental terms. Furthermore, the application of thermal insulation to the opaque building’s envelope is more beneficial in energy and environmental terms than from an economic perspective. Full article
Show Figures

Figure 1

20 pages, 1581 KB  
Review
A Scoping Review on Environmental, Economic, and Social Impacts of the Gasification Processes
by Zahir Barahmand and Marianne S. Eikeland
Environments 2022, 9(7), 92; https://doi.org/10.3390/environments9070092 - 12 Jul 2022
Cited by 18 | Viewed by 8895
Abstract
In recent years, computer-based simulations have been used to enhance production processes, and sustainable industrial strategies are increasingly being considered in the manufacturing industry. In order to evaluate the performance of a gasification process, the Life Cycle Thinking (LCT) technique gathers relevant impact [...] Read more.
In recent years, computer-based simulations have been used to enhance production processes, and sustainable industrial strategies are increasingly being considered in the manufacturing industry. In order to evaluate the performance of a gasification process, the Life Cycle Thinking (LCT) technique gathers relevant impact assessment tools to offer quantitative indications across different domains. Following the PRISMA guidelines, the present paper undertakes a scoping review of gasification processes’ environmental, economic, and social impacts to reveal how LCT approaches coping with sustainability. This report categorizes the examined studies on the gasification process (from 2017 to 2022) through the lens of LCT, discussing the challenges and opportunities. These studies have investigated a variety of biomass feedstock, assessment strategies and tools, geographical span, bioproducts, and databases. The results show that among LCT approaches, by far, the highest interest belonged to life cycle assessment (LCA), followed by life cycle cost (LCC). Only a few studies have addressed exergetic life cycle assessment (ELCA), life cycle energy assessment (LCEA), social impact assessment (SIA), consequential life cycle assessment (CLCA), and water footprint (WLCA). SimaPro® (PRé Consultants, Netherlands), GaBi® (sphere, USA), and OpenLCA (GreenDelta, Germany) demonstrated the greatest contribution. Uncertainty analysis (Monte Carlo approach and sensitivity analysis) was conducted in almost half of the investigations. Most importantly, the results confirm that it is challenging or impossible to compare the environmental impacts of the gasification process with other alternatives since the results may differ based on the methodology, criteria, or presumptions. While gasification performed well in mitigating negative environmental consequences, it is not always the greatest solution compared to other technologies. Full article
(This article belongs to the Topic Climate Change, Air Pollution, and Human Health)
Show Figures

Figure 1

28 pages, 3935 KB  
Article
A Comprehensive Framework for Standardising System Boundary Definition in Life Cycle Energy Assessments
by Hossein Omrany, Veronica Soebarto, Jian Zuo and Ruidong Chang
Buildings 2021, 11(6), 230; https://doi.org/10.3390/buildings11060230 - 28 May 2021
Cited by 16 | Viewed by 5791
Abstract
This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed [...] Read more.
This paper aims to propose a comprehensive framework for a clear description of system boundary conditions in life cycle energy assessment (LCEA) analysis in order to promote the incorporation of embodied energy impacts into building energy-efficiency regulations (BEERs). The proposed framework was developed based on an extensive review of 66 studies representing 243 case studies in over 15 countries. The framework consists of six distinctive dimensions, i.e., temporal, physical, methodological, hypothetical, spatial, and functional. These dimensions encapsulate 15 components collectively. The proposed framework possesses two key characteristics; first, its application facilitates defining the conditions of a system boundary within a transparent context. This consequently leads to increasing reliability of obtained LCEA results for decision-making purposes since any particular conditions (e.g., truncation or assumption) considered in establishing the boundaries of a system under study can be revealed. Second, the use of a framework can also provide a meaningful basis for cross comparing cases within a global context. This characteristic can further result in identifying best practices for the design of buildings with low life cycle energy use performance. Furthermore, this paper applies the proposed framework to analyse the LCEA performance of a case study in Adelaide, Australia. Thereafter, the framework is utilised to cross compare the achieved LCEA results with a case study retrieved from literature in order to demonstrate the framework’s capacity for cross comparison. The results indicate the capability of the framework for maintaining transparency in establishing a system boundary in an LCEA analysis, as well as a standardised basis for cross comparing cases. This study also offers recommendations for policy makers in the building sector to incorporate embodied energy into BEERs. Full article
Show Figures

Figure 1

24 pages, 2439 KB  
Article
Energetic and Economic Analyses for Agricultural Management Models: The Calabria PGI Clementine Case Study
by Giacomo Falcone, Teodora Stillitano, Anna Irene De Luca, Giuseppe Di Vita, Nathalie Iofrida, Alfio Strano, Giovanni Gulisano, Biagio Pecorino and Mario D’Amico
Energies 2020, 13(5), 1289; https://doi.org/10.3390/en13051289 - 10 Mar 2020
Cited by 20 | Viewed by 4138
Abstract
Farming systems need to be planned to provide suitable levels of economic profitability and, at the same time, ensure an effective energy use, in order to perform environmentally friendly production strategies. The herein present work aims to assess the efficiency of energy use [...] Read more.
Farming systems need to be planned to provide suitable levels of economic profitability and, at the same time, ensure an effective energy use, in order to perform environmentally friendly production strategies. The herein present work aims to assess the efficiency of energy use and economic impacts of the main farming methods (conventional, organic and integrated) of Clementine’s crops in Calabria (South Italy), through a combined use of Life Cycle Energy Assessment (LCEA) approach and economic analysis. For this purpose, data were collected from clementine producers by using face-to-face interviews. The results revealed that average energy consumption in the organic farming systems was 72,739 MJ, lower than conventional and integrated systems equal to 95,848 MJ and 94,060 MJ, respectively. This is mainly due to the ban of chemicals. Economic analysis showed that organic farms were more profitable compared with the other farming methods, because of the greater selling price and the EU economic support, reaching an average net profit of 4255 € ha−1 against 3134 € ha−1 of integrated farms and 2788 € ha−1 of conventional ones. The economic efficiency of energy from clementine production was 0.058 € MJ−1 in the organic farming, higher compared to the other two farming systems equal to 0.033 € MJ−1 on average. Full article
Show Figures

Figure 1

Back to TopTop