Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = lenthionine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2321 KiB  
Article
Disentangling the Tissue-Specific Variations of Volatile Flavor Profiles of the Lentinula edodes Fruiting Body
by Yuan Guo, Jing Zhao, Huixian Wei, Qi Gao, Shuang Song, Yangyang Fan, Dong Yan, Yu Liu and Shouxian Wang
Foods 2024, 13(1), 86; https://doi.org/10.3390/foods13010086 - 26 Dec 2023
Viewed by 1805
Abstract
For Lentinula edodes, its characteristic flavor is the key determinant for consumer preferences. However, the tissue-specific volatile flavor variations of the fruiting body have been overlooked. Here, we comprehensively investigated the volatile flavor profiles of different tissues, including the pileus skin, context, [...] Read more.
For Lentinula edodes, its characteristic flavor is the key determinant for consumer preferences. However, the tissue-specific volatile flavor variations of the fruiting body have been overlooked. Here, we comprehensively investigated the volatile flavor profiles of different tissues, including the pileus skin, context, gill, and stipe of the fruiting body, of two widely cultivated L. edodes strains (T2 and 0912) using the gas chromatography–mass spectrometry (GC–MS) technique combined with a multivariate analysis. We show that the eight-carbon and sulfur compounds, which represented 43.2–78.0% and 1.4–42.9% of the total volatile emissions for strains 0912 and T2, respectively, dominated their volatile profiles. Compared with strain T2, strain 0912 had a higher total content of eight-carbon compounds but a lower total content of sulfur compounds in the fruiting body. The sulfur compounds represented 32.2% and 42.9% of the total volatile emissions for strains 0912 and T2, respectively. In contrast, they constituted only 1.4% in the stipes of strain 0912 and 9.0% in the skin of strain T2. The proportions of the predominant C8 compounds (1-octen-3-one, 1-octen-3-ol, and 3-octanone) and sulfur compounds (lenthionine, 1,2,4-trithiolane, dimethyl disulfide, and dimethyl trisulfide) changed depending on the tissues and strains. Using machine learning, we show that the prediction accuracy for different strains and tissues using their volatile profiles could reach 100% based on the highly diverse strain- and tissue-derived volatile variations. Our results reveal and highlight for the first time the comprehensive tissue-specific volatile flavor variations of the L. edodes fruiting body. These findings underscore the significance of considering strain and tissue differences as pivotal variables when aiming to develop products with volatile flavor characteristics. Full article
(This article belongs to the Special Issue Food Flavor Chemistry and Sensory Evaluation)
Show Figures

Figure 1

24 pages, 1465 KiB  
Article
Cellular Antioxidant, Anti-Inflammatory, and Antiproliferative Activities from the Flowers, Leaves and Fruits of Gallesia integrifolia Spreng Harms
by Gabriela Catuzo Canônico Silva, Mariane de Almeida Machado, Karina Sakumoto, Rodrigo Sadao Inumaro, José Eduardo Gonçalves, Filipa Mandim, Josiana Vaz, Juliana Silveira do Valle, Maria Graciela Iecher Faria, Suelen Pereira Ruiz, Ranulfo Piau Junior, Daniela Dib Gonçalves and Zilda Cristiani Gazim
Molecules 2023, 28(14), 5406; https://doi.org/10.3390/molecules28145406 - 14 Jul 2023
Cited by 3 | Viewed by 2236
Abstract
Gallesia integrifolia, a notable species in the Atlantic Forest, has been traditionally employed in folk medicine for treating rheumatism, asthma, and worms. This study investigated the cellular antioxidant, antiproliferative, and anti-inflammatory activities of the essential oils (EOs) and crude extracts (CEs) from G. [...] Read more.
Gallesia integrifolia, a notable species in the Atlantic Forest, has been traditionally employed in folk medicine for treating rheumatism, asthma, and worms. This study investigated the cellular antioxidant, antiproliferative, and anti-inflammatory activities of the essential oils (EOs) and crude extracts (CEs) from G. integrifolia flowers, fruits, and leaves. The chemical identification of EOs was performed by GC–MS and CEs by UHPLC–MS. Cellular antioxidant and anti-inflammatory activities were assessed through mouse macrophage cell culture. In addition, the antiproliferative potential was evaluated in gastric, colorectal, breast, and lung tumor cell lines and non-tumor VERO cells. EOs predominantly contained organosulfur compounds in flowers (96.29%), fruits (94.94%), and leaves (90.72%). We found the main compound is 2,2′-Disulfanediyldiethanethiol in the EOs of flowers (47.00%), leaves (41.82%), and fruits (44.39%). Phenolic compounds were identified in CEs. The EOs and CEs demonstrated potential against the tumor cell lines tested (GI50 between 51 and 230 µg/mL). The selectivity index values were greater than 1.0 (1.01 to 3.37), suggesting a relative safety profile. Moreover, the anti-inflammatory activity IC50 ranged from 36.00 to 268 µg/mL, and the cellular oxidation inhibition ranged from 69% to 82%. The results suggest that oils and extracts derived from G. integrifolia have potential for use in various industrial sectors. Full article
(This article belongs to the Special Issue Antioxidant Activity of Natural Products)
Show Figures

Figure 1

14 pages, 2556 KiB  
Article
Citric Acid Induces the Increase in Lenthionine Content in Shiitake Mushroom, Lentinula edodes
by Mengting Hong, Dan Han, Jinjin Qiao, Xiaolin Zhou, Hanshou Yu and Liang Shi
Foods 2022, 11(24), 4110; https://doi.org/10.3390/foods11244110 - 19 Dec 2022
Cited by 6 | Viewed by 2628
Abstract
Shiitake mushroom, Lentinula edodes, is the second largest edible fungus in the world, with a characteristic aroma. 1,2,3,5,6-pentathioheterocycloheptane, commonly known as lenthionine, is the main source of this aroma. Lenthionine has high commercial value, and if we explore the possible induction mechanism [...] Read more.
Shiitake mushroom, Lentinula edodes, is the second largest edible fungus in the world, with a characteristic aroma. 1,2,3,5,6-pentathioheterocycloheptane, commonly known as lenthionine, is the main source of this aroma. Lenthionine has high commercial value, and if we explore the possible induction mechanism of citric acid in lenthionine synthesis, we can provide a reference for the effective application of citric acid as an inducer. In this paper, the single-factor treatment of Lentinula edodes with variable citric acid concentration and treatment duration showed that the best citric acid concentration for L. edodes was 300 μM, and the best treatment duration was 15 days. Additionally, the optimal design conditions were obtained using the response surface method (RSM); the treatment concentration was 406 μM/L, the treatment duration was 15.6 days, and the lenthionine content was 130 μg/g. γ-Glutamyl transpeptidase (LEGGT) and cystine sulfoxide lyase (LECSL) are the key enzymes involved in the biosynthesis of lanthionine. The expression levels of LEGGT and LECSL genes increased significantly under citric acid treatment. Additionally, the lenthionine content of the silenced strains of LEGGT and LECSL was significantly decreased. Full article
(This article belongs to the Section Plant Foods)
Show Figures

Figure 1

20 pages, 3282 KiB  
Article
An Insight by Molecular Sensory Science Approaches to Contributions and Variations of the Key Odorants in Shiitake Mushrooms
by Si-Lu Wang, Song-Yi Lin, Han-Ting Du, Lei Qin, Li-Ming Lei and Dong Chen
Foods 2021, 10(3), 622; https://doi.org/10.3390/foods10030622 - 15 Mar 2021
Cited by 28 | Viewed by 4451
Abstract
An insight using molecular sensory science approaches to the contributions and variations of the key odorants in shiitake mushrooms is revealed in this study. Odorants were extracted by headspace solid phase microextraction (HS-SPME) and direct solvent extraction combined with solvent-assisted flavor evaporation (DSE-SAFE) [...] Read more.
An insight using molecular sensory science approaches to the contributions and variations of the key odorants in shiitake mushrooms is revealed in this study. Odorants were extracted by headspace solid phase microextraction (HS-SPME) and direct solvent extraction combined with solvent-assisted flavor evaporation (DSE-SAFE) in fresh and hot-air-dried shiitake mushrooms. Among them, 18 and 22 predominant odorants were determined by detection frequency analysis (DFA) and aroma extract dilution analysis (AEDA) combined with gas chromatography-olfactometry (GC-O) in the fresh and dried samples, respectively. The contributions of these predominant odorants in the food matrix were determined by quantification and odor activity values (OAVs) with aroma recombination verification. There were 13 and 14 odorants identified as key contributing odorants to overall aroma, respectively. 1-Octen-3-ol and 1-octen-3-one were the most key contributing odorants in the fresh samples in contributing mushroom-like odor. After hot-air-drying, the OAV and concentrations on dry basis of the key contributing odorants changed, due to oxidation, degradation, caramelization and Maillard reactions of fatty acids, polysaccharides and amino acids. 1-Octen-3-ol was reduced most significantly and degraded to 1-hydroxy-3-octanone, while phenylethyl alcohol increased the most and was formed by phenylalanine. In hot-air-dried samples, lenthionine became the most important contributor and samples were characterized by a sulfury odor. Overall contributions and variations of odorants to the aroma of shiitake mushrooms were revealed at the molecular level. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

Back to TopTop