Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = leachate circulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8968 KB  
Article
Stabilization of High-Volume Circulating Fluidized Bed Fly Ash Composite Gravels via Gypsum-Enhanced Pressurized Flue Gas Heat Curing
by Nuo Xu, Rentuoya Sa, Yuqing He, Jun Guo, Yiheng Chen, Nana Wang, Yuchuan Feng and Suxia Ma
Materials 2025, 18(15), 3436; https://doi.org/10.3390/ma18153436 - 22 Jul 2025
Cited by 3 | Viewed by 783
Abstract
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional [...] Read more.
Circulating fluidized bed fly ash (CFBFA) stockpiles release alkaline dust, high-pH leachate, and secondary CO2/SO2—an environmental burden that exceeds 240 Mt yr−1 in China alone. Yet, barely 25% is recycled, because the high f-CaO/SO3 contents destabilize conventional cementitious products. Here, we presents a pressurized flue gas heat curing (FHC) route to bridge this scientific deficit, converting up to 85 wt% CFBFA into structural lightweight gravel. The gypsum dosage was optimized, and a 1:16 (gypsum/CFBFA) ratio delivered the best compromise between early ettringite nucleation and CO2-uptake capacity, yielding the highest overall quality. The optimal mix reaches 9.13 MPa 28-day crushing strength, 4.27% in situ CO2 uptake, 1.75 g cm−3 bulk density, and 3.59% water absorption. Multi-technique analyses (SEM, XRD, FTIR, TG-DTG, and MIP) show that FHC rapidly consumes expansive phases, suppresses undesirable granular-ettringite formation, and produces a dense calcite/needle-AFt skeleton. The FHC-treated CFBFA composite gravel demonstrates 30.43% higher crushing strength than JTG/TF20-2015 standards, accompanied by a water absorption rate 28.2% lower than recent studies. Its superior strength and durability highlight its potential as a low-carbon lightweight aggregate for structural engineering. A life-cycle inventory gives a cradle-to-gate energy demand of 1128 MJ t−1 and a process GWP of 226 kg CO2-eq t−1. Consequently, higher point-source emissions paired with immediate mineral sequestration translate into a low overall climate footprint and eliminate the need for CFBFA landfilling. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Graphical abstract

16 pages, 8067 KB  
Article
Application of Electrical Resistivity Tomography in Geotechnical and Geoenvironmental Engineering Aspect
by Md Jobair Bin Alam, Asif Ahmed and Md Zahangir Alam
Geotechnics 2024, 4(2), 399-414; https://doi.org/10.3390/geotechnics4020022 - 4 Apr 2024
Cited by 16 | Viewed by 9699
Abstract
Electrical resistivity tomography (ERT) has turned out to be one of the most applied and user-friendly geophysical methods in geotechnical and geoenvironmental research. ERT is an emerging technology that is becoming popular nowadays for investigating subsurface conditions. Multiple attributes of the technology using [...] Read more.
Electrical resistivity tomography (ERT) has turned out to be one of the most applied and user-friendly geophysical methods in geotechnical and geoenvironmental research. ERT is an emerging technology that is becoming popular nowadays for investigating subsurface conditions. Multiple attributes of the technology using various electrode configurations significantly reduce measurement time and are suitable for applications even in hardly accessible mountain areas. It is a noninvasive test for subsurface characterization and a very sensitive method used to determine geophysical properties, i.e., structural integrity, water content, fluid composition, etc. This paper aimed to elucidate the ERT technique’s main features and applications in geotechnical and geoenvironmental engineering through four case studies. The first case study investigated the possible flow paths and areas of moisture accumulation after leachate recirculation in a bioreactor landfill. The second case study attempted to determine the moisture variation along highway pavement. The third case study explored the slope failure investigation by ERT. The fourth case study demonstrated the efficiency of the ERT method in the landfill evapotranspiration (ET) cover to investigate moisture variation on a broader scale and performance monitoring. In all of the four cases, ERT exhibited promising performance. Full article
Show Figures

Figure 1

14 pages, 3356 KB  
Article
Geophysical Monitoring of Leachate Injection in Pretreated Waste Landfill
by Alberto Godio and Fulvia Chiampo
Appl. Sci. 2023, 13(9), 5661; https://doi.org/10.3390/app13095661 - 4 May 2023
Cited by 9 | Viewed by 4405
Abstract
Landfill leachate recirculation is applied to manage the landfill as a bioreactor to enhance biogas production, limiting the impact due to greenhouse gas emissions and optimizing the energy recovery from biogas. This study deals with the geophysical monitoring of the leachate recirculation within [...] Read more.
Landfill leachate recirculation is applied to manage the landfill as a bioreactor to enhance biogas production, limiting the impact due to greenhouse gas emissions and optimizing the energy recovery from biogas. This study deals with the geophysical monitoring of the leachate recirculation within the waste of a pretreated waste landfill. For this aim, electrical resistivity tomography (ERT) was adopted, detecting the main distribution of moisture within the waste both through the surface and through several boreholes. The electrical resistivity of waste mainly depends on water content, leachate salinity and temperature. The method is sensitive to the transient phenomena associated with leachate flow within the waste; moreover, the ERT long-term monitoring data suffer from anomalous and unexpected polarization phenomena induced by the measurements themselves. Results demonstrated the reliability of this approach to qualitatively detect the landfill volume affected by the leachate circulation. The effects of moisture changes by leachate infiltration on biogas production are still challenging, notwithstanding a positive effect on methane concentration in biogas itself is evident. Full article
Show Figures

Figure 1

13 pages, 1683 KB  
Article
Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts
by Rajinikanth Rajagopal, Seyyed Ebrahim Mousavi, Bernard Goyette and Suman Adhikary
Bioengineering 2021, 8(5), 57; https://doi.org/10.3390/bioengineering8050057 - 4 May 2021
Cited by 36 | Viewed by 7194
Abstract
Third generation biofuels and high-value bioproducts produced from microalgal biomass have been considered promising long-term sustainable alternatives for energy and/or food production, potentially decreasing greenhouse gas emissions. Microalgae as a source of biofuels have been widely studied for bioethanol/biodiesel/biogas production. However, critical research [...] Read more.
Third generation biofuels and high-value bioproducts produced from microalgal biomass have been considered promising long-term sustainable alternatives for energy and/or food production, potentially decreasing greenhouse gas emissions. Microalgae as a source of biofuels have been widely studied for bioethanol/biodiesel/biogas production. However, critical research is needed in order to increase the efficiency of microalgae production from high-N agri-waste, not only for biofuels but also for bio-based products, and thus enhance its commercial viability. The growth in the poultry industry has led to increased chicken manure (CM), which are rich in ammonia, phosphate, potassium, and other trace elements. These constituents could be used as nutrients for growing microalgae. In this research, a two-stage (liquid–solid) anaerobic digester treating CM at 20 ± 1 °C was performed, and liquid digestate (leachate) obtained after the digestion process was used as a substrate to grow the microalgal strain Chlorella vulgaris CPCC 90. Considering the high-N content (NH3-N: 5314 mg/L; TKN: 6197 mg/L) in liquid digestate, different dilutions were made, using distilled water to obtain viz. 10%, 30%, 50%, 70%, 90%, and 100% of the digestate concentrations for the microalgae cultivation. Preliminary results showed that Chlorella vulgaris CPCC 90 was able to grow and utilize nutrients from a 10% diluted CM digestate. Future research is underway to enhance microalgal growth at higher digestate concentrations and to optimize the use of microalgae/microalgae-bacteria consortia for better adaptation to high-N content wastes. An AD-microalgae coupling scenario has been proposed for the circulation bioeconomy framework. Full article
(This article belongs to the Special Issue Bioengineering and Fermentation Technology)
Show Figures

Figure 1

11 pages, 2784 KB  
Article
Occurrence and Distribution of Uranium in a Hydrological Cycle around a Uranium Mill Tailings Pond, Southern China
by Wenjie Ma, Bai Gao, Yadan Guo, Zhanxue Sun, Yanhong Zhang, Gongxin Chen, Xiaojie Zhu and Chunyan Zhang
Int. J. Environ. Res. Public Health 2020, 17(3), 773; https://doi.org/10.3390/ijerph17030773 - 26 Jan 2020
Cited by 26 | Viewed by 6525
Abstract
Uranium (U) mining activities, which lead to contamination in soils and waters (i.e., leachate from U mill tailings), cause serious environmental problems. However, limited research works have been conducted on U pollution associated with a whole soil-water system. In this study, a total [...] Read more.
Uranium (U) mining activities, which lead to contamination in soils and waters (i.e., leachate from U mill tailings), cause serious environmental problems. However, limited research works have been conducted on U pollution associated with a whole soil-water system. In this study, a total of 110 samples including 96 solid and 14 water samples were collected to investigate the characteristics of U distribution in a natural soil-water system near a U mining tailings pond. Results showed that U concentrations ranged from 0.09 ± 0.02 mg/kg to 2.56 × 104± 23 mg/kg in solid samples, and varied greatly in different locations. For tailings sand samples, the highest U concentration (2.56× 104 ± 23 mg/kg) occurred at the depth of 80 cm underground, whereas, for paddy soil samples, the highest U concentration (5.22 ± 0.04 mg/kg) was found at surface layers. Geo-accumulation index and potential ecological hazard index were calculated to assess the hazard of U in the soils. The calculation results showed that half of the soil sampling sites were moderately polluted. For groundwater samples, U concentrations ranged from 0.55 ± 0.04 mg/L to 3.36 ± 0.02 mg/L with a mean value of 2.36 ± 0.36 mg/L, which was significantly lower than that of percolating waters (ranging from 4.56 ± 0.02 mg/L to 12.05 ± 0.04 mg/L, mean 7.91 ± 0.98 mg/L). The results of this study suggest that the distribution of U concentrations in a soil-water system was closely associated with hydrological cycles and U concentrations decreased with circulation path. Full article
Show Figures

Figure 1

14 pages, 2163 KB  
Article
Leaching Behavior of Circulating Fluidised Bed MSWI Air Pollution Control Residue in Washing Process
by Zhiliang Chen, Wei Chang, Xuguang Jiang, Shengyong Lu, Alfons Buekens and Jianhua Yan
Energies 2016, 9(9), 743; https://doi.org/10.3390/en9090743 - 13 Sep 2016
Cited by 18 | Viewed by 5641
Abstract
In this study, air pollution control (APC) residue is conducted with water washing process to reduce its chloride content. A novel electrical conductivily (EC) measurement method is proposed to monitor the dynamic change of chloride concentrations in leachate as well as the chloride [...] Read more.
In this study, air pollution control (APC) residue is conducted with water washing process to reduce its chloride content. A novel electrical conductivily (EC) measurement method is proposed to monitor the dynamic change of chloride concentrations in leachate as well as the chloride content of the residue. The method equally applies to various washing processes with different washing time, liquid/solid ratio and washing frequency. The results show that washing effectively extracts chloride salts from APC residues, including those from circulating fluidized bed (CFB) municipal solid waste incineration (MSWI). The most appropriate liquid/solid ratio and washing time in the first washing are found to be around 4 L water per kg of APC residue and 30 min, respectively, and washing twice is required to obtain maximum dissolution. The pH value is the major controlling factor of the heavy metals speciation in leachate, while chloride concentration also affects the speciation of Cd. Water washing causes no perceptible transfer of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) from the APC residue to leachate. The chloride concentration is strongly related with electrical conductivity (EC), as well as with the concentrations of calcium, sodium and potassium of washing water. Their regression analyses specify that soluble chloride salts and EC could act as an indirect indicator to monitor the change of chloride concentration and remaining chloride content, thus, contributing to the selection of the optimal washing conditions. Full article
(This article belongs to the Special Issue Energy and Waste Management)
Show Figures

Figure 1

Back to TopTop