Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestion: Feedstock, Inoculum and Experimental Set-Up
2.2. Microalgae Cultivation Protocol
2.3. Analytical Methods
Physicochemical Parameters of CM Leachate
3. Results and Discussion
3.1. Performance of Two Stage High Solids Anaerobic Digestion
3.2. Growth of Microalgal Strain Chlorella vulgaris CPCC 90
3.2.1. Growth Curve of the Algal Strain
3.2.2. Algal Incubation Experiments: Digestate Characteristics
3.3. Integration of AD and Microalgae Cultivation: Economic Considerations and Future Directions
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Canada’s Chicken Industry. Available online: http://www.agr.gc.ca/eng/industry-markets-and-trade/canadian-agri-food-sector-intelligence/poultry-and-eggs/poultry-and-egg-market-information/chicken/?id=1384971854392 (accessed on 9 January 2021).
- Gerber, P.; Opio, C.; Steinfeld, H. Poultry Production and the Environment—A Review; Animal Production and Health Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla: Rome, Italy, 2007; p. 153. [Google Scholar]
- Rajagopal, R.; Massé, D.I. Start-up of Dry Anaerobic Digestion System for Processing Solid Poultry Litter Using Adapted Liquid Inoculum. Process Saf. Environ. Prot. 2016, 102, 495–502. [Google Scholar] [CrossRef]
- Miller, B.F. Extruding Hatchery Waste. Poult. Sci. 1984, 63, 1284–1286. [Google Scholar] [CrossRef]
- Bernal, M.P.; Alburquerque, J.A.; Moral, R. Composting of Animal Manures and Chemical Criteria for Compost Maturity Assessment. A Review. Bioresour. Technol. 2009, 100, 5444–5453. [Google Scholar] [CrossRef] [PubMed]
- Sobel, A.T.; Ludington, D.C. Destruction of Chicken Manure by Incineration. In Proceedings of the National Symposium on Animal Waste Management, St. Joseph, MI, USA, 5–7 May 1966; pp. 95–98. [Google Scholar]
- Rajagopal, R.; Massé, D.I.; Singh, G. A Critical Review on Inhibition of Anaerobic Digestion Process by Excess Ammonia. Bioresour. Technol. 2013, 143, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Park, S.Y.; Li, Y. Nutrient Recovery from Wastewater Streams by Microalgae: Status and Prospects. Renew. Sustain. Energy Rev. 2013, 19, 360–369. [Google Scholar] [CrossRef]
- Wang, L.; Li, Y.; Chen, P.; Min, M.; Chen, Y.; Zhu, J.; Ruan, R.R. Anaerobic Digested Dairy Manure as a Nutrient Supplement for Cultivation of Oil-Rich Green Microalgae Chlorella sp. Bioresour. Technol. 2010, 101, 2623–2628. [Google Scholar] [CrossRef]
- Fenton, O. Agricultural Nutrient Surpluses as Potential Input Sources to Grow Third Generation Biomass (Microalgae): A Review. Algal Res. 2012, 1, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Benemann, J. Microalgae for Biofuels and Animal Feeds. Energies 2013, 6, 5869–5886. [Google Scholar] [CrossRef] [Green Version]
- del Mar Morales-Amaral, M.; Gómez-Serrano, C.; Acién, F.G.; Fernández-Sevilla, J.M.; Molina-Grima, E. Production of Microalgae using Centrate from Anaerobic Digestion as the Nutrient Source. Algal Res. 2015, 9, 297–305. [Google Scholar] [CrossRef]
- Cheng, J.; Ye, Q.; Xu, J.; Yang, Z.; Zhou, J.; Cen, K. Improving Pollutants Removal by Microalgae Chlorella PY-ZU1 with 15% CO2 from Undiluted Anaerobic Digestion Effluent of Food Wastes with Ozonation Pretreatment. Bioresour. Technol. 2016, 216, 273–279. [Google Scholar] [CrossRef]
- Chan, A.; Salsali, H.; McBean, E. Heavy Metal Removal (Copper and Zinc) in Secondary Effluent from Wastewater Treatment Plants by Microalgae. ACS Sustain. Chem. Eng. 2013, 2, 130–137. [Google Scholar] [CrossRef]
- Metting, F.B. Biodiversity and Application of Microalgae. J. Ind. Microbiol. 1996, 17, 477–489. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Microalgae for Biodiesel Production and other Applications: A Review. Renew. Sustain. Energy Rev. 2010, 14, 217–232. [Google Scholar] [CrossRef] [Green Version]
- Suparmaniam, U.; Lam, M.K.; Uemura, Y.; Lim, J.W.; Lee, K.T.; Shuit, S.H. Insights into the Microalgae Cultivation Technology and Harvesting Process for Biofuel Production: A Review. Renew. Sustain. Energy Rev. 2019, 115, 109361. [Google Scholar] [CrossRef]
- Molinuevo-Salces, B.; Mahdy, A.; Ballesteros, M.; González-Fernández, C. From Piggery Wastewater Nutrients to Biogas: Microalgae Biomass Revalorization through Anaerobic Digestion. Renew. Energy 2016, 96, 1103–1110. [Google Scholar] [CrossRef]
- Nwoba, E.G.; Ayre, J.M.; Moheimani, N.R.; Ubi, B.E.; Ogbonna, J.C. Growth Comparison of Microalgae in Tubular Photobioreactor and Open Pond for Treating Anaerobic Digestion Piggery Effluent. Algal Res. 2016, 17, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.S.; Miao, Z.H.; Wyatt, S.K. Influence of Nutrient Loads, Feeding Frequency and Inoculum Source on Growth of Chlorella vulgaris in Digested Piggery Effluent Culture Medium. Bioresour. Technol. 2010, 101, 6012–6018. [Google Scholar] [CrossRef] [PubMed]
- Ayre, J.M.; Moheimani, N.R.; Borowitzka, M.A. Growth of Microalgae on Undiluted Anaerobic Digestate of Piggery Effluent with High Ammonium Concentrations. Algal Res. 2017, 24, 218–226. [Google Scholar] [CrossRef] [Green Version]
- De la Noüe, J.; Basseres, A. Biotreatment of Anaerobically Digested Swine Manure with Microalgae. Biol. Wastes 1989, 29, 17–31. [Google Scholar] [CrossRef]
- Mulbry, W.; Kondrad, S.; Pizarro, C.; Kebede-Westhead, E. Treatment of Dairy Manure Effluent using Freshwater Algae: Algal Productivity and Recovery of Manure Nutrients using Pilot-Scale Algal Turf Scrubbers. Bioresour. Technol. 2008, 99, 8137–8142. [Google Scholar] [CrossRef]
- Woertz, I.C. Lipid Productivity of Algae Grown on Dairy Wastewater as a Possible Feedstock for Biodiesel. Master’s Thesis, California Polytechnic University, San Luis Obispo, CA, USA, 2008; p. 183. [Google Scholar]
- Singh, M.; Reynolds, D.L.; Das, K.C. Microalgal System for Treatment of Effluent from Poultry Litter Anaerobic Digestion. Bioresour. Technol. 2011, 102, 10841–10848. [Google Scholar] [CrossRef] [PubMed]
- Duangjan, K.; Kumsiri, B.; Pumas, C. Lipid Production by Microalga Scenedesmus sp. AARL G022 in the Cultivation with Effluent from Chicken Manure Biogas Plant. Desalination Water Treat. 2016, 57, 27191–27198. [Google Scholar] [CrossRef]
- Zuliani, L.; Frison, N.; Jelic, A.; Fatone, F.; Bolzonella, D.; Ballottari, M. Microalgae Cultivation on Anaerobic Digestate of Municipal Wastewater, Sewage Sludge and Agro-Waste. Int. J. Mol. Sci. 2016, 17, 1692. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Dong, R.; Peng, G.; Yi, Z.; Huo, S.; Liu, Y.; Pang, C. Cultivation of Chlorella sp. in Anaerobic Effluent for Biomass Production. Environ. Eng. Manag. J. (EEMJ) 2011, 10, 909–912. [Google Scholar] [CrossRef]
- Zheng, M.; Schideman, L.C.; Tommaso, G.; Chen, W.-T.; Zhou, Y.; Nair, K.; Qian, W.; Zhang, Y.; Wang, K. Anaerobic Digestion of Wastewater Generated from the Hydrothermal Liquefaction of Spirulina: Toxicity Assessment and Minimization. Energy Convers. Manag. 2017, 141, 420–428. [Google Scholar] [CrossRef] [Green Version]
- Mahato, P.; Goyette, B.; Rahaman, M.S.; Rajagopal, R. Processing High-Solid and High-Ammonia Rich Manures in a Two-Stage (Liquid-Solid) Low-Temperature Anaerobic Digestion Process: Start-Up and Operating Strategies. Bioengineering 2020, 7, 80. [Google Scholar] [CrossRef]
- Serra-Maia, R.; Bernard, O.; Gonçalves, A.; Bensalem, S.; Lopes, F. Influence of Temperature on Chlorella vulgaris Growth and Mortality Rates in a Photobioreactor. Algal Res. 2016, 18, 352–359. [Google Scholar] [CrossRef]
- Eaton, A.D.; Clesceri, L.S.; Rice, E.W.; Greenberg, A.E.; Franson, M. APHA: Standard Methods for the Examination of Water and Wastewater; American Water Works Association: Denver, CO, USA, 2005. [Google Scholar]
- Masse, D.I.; Masse, L.; Croteau, F. The Effect of Temperature Fluctuations on Psychrophilic Anaerobic Sequencing Batch Reactors Treating Swine Manure. Bioresour. Technol. 2003, 89, 57–62. [Google Scholar] [CrossRef]
- Yang, L.; Si, B.; Tan, X.; Chu, H.; Zhou, X.; Zhang, Y.; Zhang, Y.; Zhao, F. Integrated Anaerobic Digestion and Algae Cultivation for Energy Recovery and Nutrient Supply from Post-Hydrothermal Liquefaction Wastewater. Bioresour. Technol. 2018, 266, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Crofcheck, C.; Crocker, M. Application of Recycled Media and Algae-Based Anaerobic Digestate in Scenedesmus Cultivation. J. Renew. Sustain. Energy 2016, 8, 013116. [Google Scholar]
- Perez-Garcia, O.; Escalante, F.M.E.; de-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Fu, R.; Shang, L.; Brigham, C.J.; Chang, H.N. Lipid Production by Microalgae Chlorella Protothecoides with Volatile Fatty Acids (VFAs) as Carbon Sources in Heterotrophic Cultivation and its Economic Assessment. Bioprocess Biosyst. Eng. 2015, 38, 691–700. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Rusconi, N.; Ali, P.; Pagkatipunan, K.; Chen, F. Nutrients Extracted from Chicken Manure Accelerate Growth of Microalga Scenedesmus Obliquus HTB1. Green Sustain. Chem. 2017, 7, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.J. Manure as a Nutrient Source. In The Mid-Atlantic Nutrient Management Handbook; Virginia Cooperative Extension: Blacksburg, VA, USA, 2006; Chapter 9; p. 207. [Google Scholar]
- Dasan, Y.K.; Lam, M.K.; Yusup, S.; Lim, J.W.; Lee, K.T. Life Cycle Evaluation of Microalgae Biofuels Production: Effect of Cultivation System on Energy, Carbon Emission and Cost Balance Analysis. Sci. Total Environ. 2019, 688, 112–128. [Google Scholar] [CrossRef] [PubMed]
- Ledda, C.; Schievano, A.; Scaglia, B.; Rossoni, M.; Fernández, F.G.A.; Adani, F. Integration of Microalgae Production with Anaerobic Digestion of Dairy Cattle Manure: An Overall Mass and Energy Balance of the Process. J. Clean. Prod. 2016, 112, 103–112. [Google Scholar] [CrossRef]
- Bravo-Fritz, C.P.; Sáez-Navarrete, C.A.; Herrera-Zeppelin, L.A.; Varas-Concha, F. Multi-Scenario Energy-Economic Evaluation for a Biorefinery Based on Microalgae Biomass with Application of Anaerobic Digestion. Algal Res. 2016, 16, 292–307. [Google Scholar] [CrossRef]
- He, M.L.; Hollwich, W.; Rambeck, W.A. Supplementation of Algae to the Diet of Pigs: A New Possibility to Improve the Iodine Content in the Meat. J. Anim. Physiol. Anim. Nutr. 2002, 86, 97–104. [Google Scholar] [CrossRef]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Delles, R.; Fusconi, G. Effects of a DHA-Rich Unextracted Microalgae as a Dietary Supplement on Performance, Carcass Traits and Meat Fatty Acid Profile in Growing-Finishing Pigs. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1026–1038. [Google Scholar] [CrossRef] [Green Version]
- Moran, C.A.; Morlacchini, M.; Keegan, J.D.; Fusconi, G. The Effect of Dietary Supplementation with Aurantiochytrium Limacinum on Lactating Dairy Cows in Terms of Animal Health, Productivity and Milk Composition. J. Anim. Physiol. Anim. Nutr. 2018, 102, 576–590. [Google Scholar] [CrossRef] [Green Version]
- Altmann, B.; Neumann, C.; Velten, S.; Liebert, F.; Mörlein, D. Meat Quality Derived from High Inclusion of a Micro-Alga or Insect Meal as an Alternative Protein Source in Poultry Diets: A Pilot Study. Foods 2018, 7, 34. [Google Scholar] [CrossRef] [Green Version]
Parameter | Raw CM | Liquid Digestate (Leachate) |
---|---|---|
Alkalinity (mg/L) | 5.393 | 21,405 |
pH | 7.73 | 7.76 |
NH3-N (mg/L) | 5913 | 5314 |
TKN (mg/L) | 25,652 | 6197 |
Total solids (w/w %) | 69.87 | 2.8 |
Volatile solids (w/w %) | 61.09 | 1.44 |
Total COD (mg/L) | 864,375 | 35,557 |
Soluble COD (mg/L) | 291,149 | 30,685 |
Volatile fatty acids (mg/L) | 25,456 | 11,812 |
Cycle Length | Cumulative Biogas (L) | Cumulative Methane (L) | Methane Content (%) | SMY (L CH4/ g VS) | OLR (gVS/L.d) |
---|---|---|---|---|---|
70 days | 578 ± 42 | 382 ± 31 | 70 ± 11 | 0.46 ± 0.05 | 8.7 |
Parameter | Initial CM Digestate Concentration * | Final Value of CM Digestate after Microalgal Treatment | Removal Efficiency (%) |
---|---|---|---|
NH3-N (mg/L) | 531 | 3 | 99.4 |
TKN (mg/L) | 619 | 91 | 85.3 |
Total COD | 3555 | 1970 | 44.6 |
Volatile fatty acids | 1181 | 304.6 | 74.2 |
Total solid (w/w %) | 0.28 | 0.158 | 43.5 |
Volatile solid (w/w %) | 0.144 | 0.112 | 22.2 |
Manure Type | Nitrogen (kg/t) | Phosphorus (kg/t) | Potassium (kg/t) |
---|---|---|---|
Broiler litter | 26.7 | 28.5 | 18 |
Hens (laying) | 16 | 19 | 12.7 |
Average | 21.3 | 24 | 15.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajagopal, R.; Mousavi, S.E.; Goyette, B.; Adhikary, S. Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts. Bioengineering 2021, 8, 57. https://doi.org/10.3390/bioengineering8050057
Rajagopal R, Mousavi SE, Goyette B, Adhikary S. Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts. Bioengineering. 2021; 8(5):57. https://doi.org/10.3390/bioengineering8050057
Chicago/Turabian StyleRajagopal, Rajinikanth, Seyyed Ebrahim Mousavi, Bernard Goyette, and Suman Adhikary. 2021. "Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts" Bioengineering 8, no. 5: 57. https://doi.org/10.3390/bioengineering8050057
APA StyleRajagopal, R., Mousavi, S. E., Goyette, B., & Adhikary, S. (2021). Coupling of Microalgae Cultivation with Anaerobic Digestion of Poultry Wastes: Toward Sustainable Value Added Bioproducts. Bioengineering, 8(5), 57. https://doi.org/10.3390/bioengineering8050057