Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = large-area silicon drift detectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 10778 KiB  
Article
Design and 3D Electrical Simulations for a Controllable Equal-Gap Large-Area Silicon Drift Detector
by Jun Zhao, Tao Long, Mingyang Wang, Manwen Liu, Minghua Tang and Zheng Li
Sensors 2024, 24(5), 1388; https://doi.org/10.3390/s24051388 - 21 Feb 2024
Cited by 1 | Viewed by 1055
Abstract
In this study, a controllable equal-gap large-area silicon drift detector (L-SDD) is designed. The surface leakage current is reduced by reducing the SiO2-Si interface through the new controllable equal-gap design. The design of the equal gap also solves the problem whereby [...] Read more.
In this study, a controllable equal-gap large-area silicon drift detector (L-SDD) is designed. The surface leakage current is reduced by reducing the SiO2-Si interface through the new controllable equal-gap design. The design of the equal gap also solves the problem whereby the gap widens due to the larger detector size in the previous SDD design, which leads to a large invalid area of the detector. In this paper, a spiral hexagonal equal-gap L-SDD of 1 cm radius is selected for design calculation, and we implement 3D modeling and simulation of the device. The simulation results show that the internal potential gradient distribution of the L-SDD is uniform and forms a drift electric field, with the direction of electron drift pointing towards the collecting anode. The L-SDD has an excellent electron drift channel inside, and this article also analyzes the electrical performance of the drift channel to verify the correctness of the design method of the L-SDD. Full article
(This article belongs to the Special Issue Recent Innovations in Sensors for Radiation Detection)
Show Figures

Figure 1

11 pages, 4164 KiB  
Article
Optimized Design of a Hexagonal Equal Gap Silicon Drift Detector with Arbitrary Surface Electric Field Spiral
by Jiaxiong Sun, Zheng Li, Xiaodan Li, Manwen Liu and Hongfei Wang
Micromachines 2023, 14(10), 1943; https://doi.org/10.3390/mi14101943 - 18 Oct 2023
Cited by 1 | Viewed by 1310
Abstract
In our previous studies, the silicon drift detector (SDD) structure with a constant spiral ring cathode gap (g) and a given surface electric field has been partially investigated based on the physical model that gives an analytical solution to the integrals in the [...] Read more.
In our previous studies, the silicon drift detector (SDD) structure with a constant spiral ring cathode gap (g) and a given surface electric field has been partially investigated based on the physical model that gives an analytical solution to the integrals in the calculations. Those results show that the detector has excellent electrical characteristics with a very homogeneous carrier drift electric field. In order to cope with the implementation of the theoretical approach with a complete set of technical parameters, this paper performs different theoretical algorithms for the technical implementation of the detector performance using the Taylor expansion method to construct a model for cases where the parameter “j” is a non-integer, approximating the solution with finite terms. To verify the accuracy of this situation, we performed a simulation of the relevant electrical properties using the Sentaurus TCAD tool 2018. The electrical properties of the single and double-sided detectors are first compared, and then the effects of different equal gaps g (g = 10 μm, 20 μm, and 25 μm, respectively) on the electrical properties of the double-sided detectors are analyzed and demonstrated. By analyzing and comparing the electrical characteristics data from the simulation results, we can show that the double-sided structure has a larger transverse drift electric field, which improves the spatial position resolution as well as the response speed. The effect of the gap size on the electrical characteristics of the detector is also analyzed by analyzing three different gap bifacial detectors, and the results show that a 10 μm equal gap is the optimal design. Such results can be used in applications requiring large-area SDD, such as the pulsar X-ray autonomous navigation. in the future to provide navigation and positioning space services for spacecraft deep-space exploration. Full article
Show Figures

Figure 1

14 pages, 10412 KiB  
Article
Optimal Design of Multiple Floating Rings for 3D Large-Area Trench Electrode Silicon Detector
by Wenzheng Cheng, Manwen Liu, Zheng Li, Zhenyang Zhao and Zhihua Li
Sensors 2022, 22(17), 6352; https://doi.org/10.3390/s22176352 - 24 Aug 2022
Cited by 2 | Viewed by 2288
Abstract
The 3D electrode silicon detector eliminates the limit of chip thickness, so it can reduce the electrode spacing (small area) and effectively improve the radiation hardness. In order to expand the application range of the 3D electrode detector, we first propose a 3D [...] Read more.
The 3D electrode silicon detector eliminates the limit of chip thickness, so it can reduce the electrode spacing (small area) and effectively improve the radiation hardness. In order to expand the application range of the 3D electrode detector, we first propose a 3D large-area silicon detector with a large sensitive volume, and realize multiple floating rings on the upper and lower surfaces of the detector. Due to the influence of different charge states and energy levels in the Si-SiO2 interface system, the top and bottom of the 3D P+ electrode are more prone to avalanche breakdown in the 3D large-area detector before the detector is completely depleted or the carrier saturation drift velocity is reached. Moreover, the electric field distribution becomes very uneven under the influence of the oxide charge, resulting in non-equilibrium carriers that cannot drift in the optimal path parallel to the detector surface. In this paper, the effect of floating rings on the performance of a 3D large-area silicon detector is studied by TCAD simulation. It can increase avalanche breakdown voltage by 14 times in a non-irradiated environment, and can work safely in a moderate irradiated environment. The charge collection efficiency can be effectively improved by optimizing the drift path. Full article
Show Figures

Figure 1

15 pages, 2832 KiB  
Article
Novel Algorithm for Radon Real-Time Measurements with a Pixelated Detector
by Alessandro Rizzo, Francesco Cardellini, Claudio Poggi, Enrico Borra, Luca Ciciani, Livio Narici, Luciano Sperandio and Ignazio Vilardi
Sensors 2022, 22(2), 516; https://doi.org/10.3390/s22020516 - 10 Jan 2022
Cited by 2 | Viewed by 3511
Abstract
Nowadays, radon gas exposure is considered one of the main health concerns for the population because, by carrying about half the total dose due to environmental radioactivity, it is the second cause of lung cancer after smoking. Due to a relatively long half-life [...] Read more.
Nowadays, radon gas exposure is considered one of the main health concerns for the population because, by carrying about half the total dose due to environmental radioactivity, it is the second cause of lung cancer after smoking. Due to a relatively long half-life of 3.82 days, the chemical inertia and since its parent Ra-226 is largely diffuse on the earth’s crust and especially in the building materials, radon can diffuse and potentially saturate human habitats, with a concentration that can suddenly change during the 24 h day depending on temperature, pressure, and relative humidity. For such reasons, ‘real-time’ measurements performed by an active detector, possibly of small dimensions and a handy configuration, can play an important role in evaluating the risk and taking the appropriate countermeasures to mitigate it. In this work, a novel algorithm for pattern recognition was developed to exploit the potentialities of silicon active detectors with a pixel matrix structure to measure radon through the α emission, in a simple measurement configuration, where the device is placed directly in air with no holder, no collection filter or electrostatic field to drift the radon progenies towards the detector active area. This particular measurement configuration (dubbed as bare) requires an α/β-discrimination method that is not based on spectroscopic analysis: as the gas surrounds the detector the α particles are emitted at different distances from it, so they lose variable energy amount in air depending on the traveled path-length which implies a variable deposited energy in the active area. The pixels matrix structure allows overcoming this issue because the interaction of α, β and γ particles generate in the active area of the detector clusters (group of pixels where a signal is read) of different shape and energy dispersion. The novel algorithm that exploits such a phenomenon was developed using a pixelated silicon detector of the TimePix family with a compact design. An α (Am-241) and a β (Sr-90) source were used to calibrate the algorithm and to evaluate its performances in terms of β rejection capability and α recognition efficiency. Successively, the detector was exposed to different radon concentrations at the ENEA-INMRI radon facility in ‘bare’ configuration, in order to check the linearity of the device response over a radon concentration range. The results for this technique are presented and discussed, highlighting the potential applications especially the possibility to exploit small and handy detectors to perform radon active measurements in the simplest configuration. Full article
Show Figures

Figure 1

7 pages, 3307 KiB  
Article
Silicon Drift Detectors’ Spectroscopic Response during the SIDDHARTA-2 Kaonic Helium Run at the DAΦNE Collider
by Marco Miliucci, Massimiliano Bazzi, Damir Bosnar, Mario Bragadireanu, Marco Carminati, Michael Cargnelli, Alberto Clozza, Catalina Curceanu, Griseld Deda, Luca De Paolis, Raffaele Del Grande, Carlo Fiorini, Carlo Guaraldo, Mihail Iliescu, Masahiko Iwasaki, Pietro King, Paolo Levi Sandri, Johann Marton, Paweł Moskal, Fabrizio Napolitano, Szymon Niedźwiecki, Kristian Piscicchia, Alessandro Scordo, Francesco Sgaramella, Hexi Shi, Michał Silarski, Diana Sirghi, Florin Sirghi, Magdalena Skurzok, Antonio Spallone, Marlene Tüchler, Oton Vazquez Doce and Johann Zmeskaladd Show full author list remove Hide full author list
Condens. Matter 2021, 6(4), 47; https://doi.org/10.3390/condmat6040047 - 25 Nov 2021
Cited by 12 | Viewed by 3219
Abstract
A large-area silicon drift detectors (SDDs) system has been developed by the SIDDHARTA-2 collaboration for high precision light kaonic atom X-ray spectroscopy at the DAΦNE collider of Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati. The SDDs’ geometry and electric field [...] Read more.
A large-area silicon drift detectors (SDDs) system has been developed by the SIDDHARTA-2 collaboration for high precision light kaonic atom X-ray spectroscopy at the DAΦNE collider of Istituto Nazionale di Fisica Nucleare—Laboratori Nazionali di Frascati. The SDDs’ geometry and electric field configuration, combined with their read-out electronics, make these devices suitable for performing high precision light kaonic atom spectroscopy measurements in the background of the DAΦNE collider. This work presents the spectroscopic response of the SDDs system during the first exotic atoms run of SIDDHARTA-2 with kaonic helium, a preliminary to the kaonic deuterium data taking campaign. The SIDDHARTA-2 spectroscopic system has good energy resolution and a 2 μs timing window which rejects the asynchronous events, scaling the background by a factor of 105. The results obtained for the first exotic atoms run of SIDDHARTA-2 prove this system to be ready to perform the challenging kaonic deuterium measurement. Full article
(This article belongs to the Special Issue High Precision X-ray Measurements 2021)
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
Physical Processes during the Formation of Silicon-Lithium p-i-n Structures Using Double-Sided Diffusion and Drift Methods
by Ahmet Saymbetov, Ramizulla Muminov, Nursultan Japashov, Yorkin Toshmurodov, Madiyar Nurgaliyev, Nursultan Koshkarbay, Nurzhigit Kuttybay, Batyrbek Zholamanov and Zhang Jing
Materials 2021, 14(18), 5174; https://doi.org/10.3390/ma14185174 - 9 Sep 2021
Cited by 4 | Viewed by 2503
Abstract
In this paper, we described a method of double-sided diffusion and drift of lithium-ions into monocrystalline silicon for the formation of the large-sized, p-i-n structured Si(Li) radiation detectors. The p-i-n structure is a p-n junction with a doped region, where the “i-region” is [...] Read more.
In this paper, we described a method of double-sided diffusion and drift of lithium-ions into monocrystalline silicon for the formation of the large-sized, p-i-n structured Si(Li) radiation detectors. The p-i-n structure is a p-n junction with a doped region, where the “i-region” is between the n and the p layers. A well-defined i-region is usually associated with p or n layers with high resistivities. The p-i-n structure is mostly used in diodes and in some types of semiconductor radiation detectors. The uniqueness of this method is that, in this method, the processes of diffusion and drift of lithium-ions, which are the main processes in the formation of Si(Li) p-i-n structures, are produced from both flat sides of cylindrical-shaped monocrystalline silicon, at optimal temperature (T = 420 °C) conditions of diffusion, and subsequently, with synchronous supply of temperature (from 55 to 100 °C) and reverse bias voltage (from 70 to 300 V) during drift of lithium-ions into silicon. Thus, shortening the manufacturing time of the detector and providing a more uniform distribution of lithium-ions in the crystal volume. Since, at present, the development of manufacturing of large-sized Si(Li) detectors is hindered due to difficulties in obtaining a uniformly compensated large area and time-consuming manufacturing process, the proposed method may open up new possibilities in detector manufacturing. Full article
Show Figures

Figure 1

8 pages, 2226 KiB  
Article
Energy Response of Silicon Drift Detectors for Kaonic Atom Precision Measurements
by Marco Miliucci, Mihail Iliescu, Aidin Amirkhani, Massimiliano Bazzi, Catalina Curceanu, Carlo Fiorini, Alessandro Scordo, Florin Sirghi and Johann Zmeskal
Condens. Matter 2019, 4(1), 31; https://doi.org/10.3390/condmat4010031 - 11 Mar 2019
Cited by 22 | Viewed by 3494
Abstract
Novel, large-area silicon drift detectors (SDDs) have been developed to perform precision measurements of kaonic atom X-ray spectroscopy, for the study the K ¯ N strong interaction in the low-energy regime. These devices have special geometries, field configurations and read-out electronics, resulting in [...] Read more.
Novel, large-area silicon drift detectors (SDDs) have been developed to perform precision measurements of kaonic atom X-ray spectroscopy, for the study the K ¯ N strong interaction in the low-energy regime. These devices have special geometries, field configurations and read-out electronics, resulting in excellent performances in terms of linearity, stability and energy resolution. In this work the SDDs energy response in the energy region between 4000 eV and 12,000 eV is reported, revealing a stable linear response within 1 eV and good energy resolution. Full article
(This article belongs to the Special Issue High Precision X-Ray Measurements)
Show Figures

Figure 1

Back to TopTop