Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = lanthanum strontium manganite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3551 KiB  
Article
Improvement of the Self-Controlled Hyperthermia Applications by Varying Gadolinium Doping in Lanthanum Strontium Manganite Nanoparticles
by Ashfaq Ahmad, Hassan Akbar, Imran Zada, Faiza Anjum, Amir Muhammad Afzal, Subhan Javed, Muhammad Muneeb, Asghar Ali and Jeong Ryeol Choi
Molecules 2023, 28(23), 7860; https://doi.org/10.3390/molecules28237860 - 30 Nov 2023
Cited by 4 | Viewed by 1639
Abstract
In this study, silica-encapsulated gadolinium was doped in lanthanum strontium manganite nanoparticles (NPs) with different concentrations using the citrate–gel auto-combustion method. We focused on tuning the Curie temperature and enhancing the specific absorption rate (SAR) of silica-coated gadolinium-doped lanthanum strontium manganite NPs to [...] Read more.
In this study, silica-encapsulated gadolinium was doped in lanthanum strontium manganite nanoparticles (NPs) with different concentrations using the citrate–gel auto-combustion method. We focused on tuning the Curie temperature and enhancing the specific absorption rate (SAR) of silica-coated gadolinium-doped lanthanum strontium manganite NPs to make them suitable for self-controlled magnetic hyperthermia. The samples were characterized by using transmission electron microscopy (TEM), X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), and magnetic measurements to examine the structural, optical, and magnetic properties of the manganite NPs. While our results exhibit a successful doping of gadolinium in lanthanum strontium manganite NPs, we further prepared magnetic core NPs with sizes between 20 and 50 nm. The Curie temperature of the NPs declined with increasing gadolinium doping, making them promising materials for hyperthermia applications. The Curie temperature was measured using the magnetization (M-T) curve. Magnetic heating was carried out in an external applied AC magnetic field. Our present work proved the availability of regulating the Curie temperature of gadolinium-doped lanthanum strontium manganite NPs, which makes them promising candidates for self-controlled magnetic hyperthermia applications. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Figure 1

42 pages, 5593 KiB  
Review
Overview of Approaches to Increase the Electrochemical Activity of Conventional Perovskite Air Electrodes
by Elena Filonova and Elena Pikalova
Materials 2023, 16(14), 4967; https://doi.org/10.3390/ma16144967 - 12 Jul 2023
Cited by 19 | Viewed by 3182 | Correction
Abstract
The progressive research trends in the development of low-cost, commercially competitive solid oxide fuel cells with reduced operating temperatures are closely linked to the search for new functional materials as well as technologies to improve the properties of established materials traditionally used in [...] Read more.
The progressive research trends in the development of low-cost, commercially competitive solid oxide fuel cells with reduced operating temperatures are closely linked to the search for new functional materials as well as technologies to improve the properties of established materials traditionally used in high-temperature devices. Significant efforts are being made to improve air electrodes, which significantly contribute to the degradation of cell performance due to low oxygen reduction reaction kinetics at reduced temperatures. The present review summarizes the basic information on the methods to improve the electrochemical performance of conventional air electrodes with perovskite structure, such as lanthanum strontium manganite (LSM) and lanthanum strontium cobaltite ferrite (LSCF), to make them suitable for application in second generation electrochemical cells operating at medium and low temperatures. In addition, the information presented in this review may serve as a background for further implementation of developed electrode modification technologies involving novel, recently investigated electrode materials. Full article
(This article belongs to the Special Issue Advances in Semiconductor / Electrolyte Interfaces Research)
Show Figures

Graphical abstract

11 pages, 3459 KiB  
Article
Enhancement in the Electrochemical Performance of Strontium (Sr)-Doped LaMnO3 as Supercapacitor Materials
by Xin Ye, Songtao Dong, Xiaoyun Jin, Junlin Wei, Lei Wang and Yamei Zhang
Coatings 2022, 12(11), 1739; https://doi.org/10.3390/coatings12111739 - 13 Nov 2022
Cited by 28 | Viewed by 2882
Abstract
In this study, Strontium (Sr)-doped perovskite lanthanum manganite (La1−xSrxMnO3) nanoparticles were prepared by the sol–gel method and used as electrode materials of supercapacitors. Microstructures, morphologies, and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), [...] Read more.
In this study, Strontium (Sr)-doped perovskite lanthanum manganite (La1−xSrxMnO3) nanoparticles were prepared by the sol–gel method and used as electrode materials of supercapacitors. Microstructures, morphologies, and electrochemical properties of the samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), a transmission electron microscope (TEM), Brunauer–Emmett–Teller (BET) surface area measurements, cyclic voltammetry (CV), and galvanostatic charge/discharge (GCD) cycling. Investigations demonstrated that the La0.85Sr0.15MnO3 nanoparticles had a maximum specific capacitance of 185.5 F/g at a current density of 0.5 A/g and a low charge transfer resistance (0.38 Ω) in 3 M KOH aqueous electrolyte solutions. La0.85Sr0.15MnO3 electrode yields the highest capacitance behavior because of the larger specific surface area, lower charge transfer resistance, and higher concentration of oxygen vacancy. This result demonstrates that Sr doping significantly improved the electrochemical properties of the LaMnO3 system. The anion-intercalation mechanism was examined by a charge–discharge process. This provides a promising electrode material for supercapacitors. Full article
(This article belongs to the Topic Properties of the Corroding Interface)
Show Figures

Figure 1

14 pages, 3496 KiB  
Article
Enhancement of Room-Temperature Low-Field Magnetoresistance in Nanostructured Lanthanum Manganite Films for Magnetic Sensor Applications
by Nerija Zurauskiene, Voitech Stankevic, Skirmantas Kersulis, Milita Vagner, Valentina Plausinaitiene, Jorunas Dobilas, Remigijus Vasiliauskas, Martynas Skapas, Mykola Koliada, Jaroslaw Pietosa and Andrzej Wisniewski
Sensors 2022, 22(11), 4004; https://doi.org/10.3390/s22114004 - 25 May 2022
Cited by 14 | Viewed by 2698
Abstract
The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x [...] Read more.
The results of colossal magnetoresistance (CMR) properties of La1-xSrxMnyO3 (LSMO) films grown by the pulsed injection MOCVD technique onto an Al2O3 substrate are presented. The grown films with different Sr (0.05 ≤ x ≤ 0.3) and Mn excess (y > 1) concentrations were nanostructured with vertically aligned column-shaped crystallites spread perpendicular to the film plane. It was found that microstructure, resistivity, and magnetoresistive properties of the films strongly depend on the strontium and manganese concentration. All films (including low Sr content) exhibit a metal–insulator transition typical for manganites at a certain temperature, Tm. The Tm vs. Sr content dependence for films with a constant Mn amount has maxima that shift to lower Sr values with the increase in Mn excess in the films. Moreover, the higher the Mn excess concentration in the films, the higher the Tm value obtained. The highest Tm values (270 K) were observed for nanostructured LSMO films with x = 0.17–0.18 and y = 1.15, while the highest low-field magnetoresistance (0.8% at 50 mT) at room temperature (290 K) was achieved for x = 0.3 and y = 1.15. The obtained low-field MR values were relatively high in comparison to those published in the literature results for lanthanum manganite films prepared without additional insulating oxide phases. It can be caused by high Curie temperature (383 K), high saturation magnetization at room temperature (870 emu/cm3), and relatively thin grain boundaries. The obtained results allow to fabricate CMR sensors for low magnetic field measurement at room temperature. Full article
Show Figures

Figure 1

22 pages, 11559 KiB  
Article
Smart Bone Graft Composite for Cancer Therapy Using Magnetic Hyperthermia
by Geovana L. Santana, Murilo C. Crovace, Ernesto E. Mazón, Adilson J. A. de Oliveira, Theo Z. Pavan and Edgar D. Zanotto
Materials 2022, 15(9), 3187; https://doi.org/10.3390/ma15093187 - 28 Apr 2022
Cited by 4 | Viewed by 2911
Abstract
Magnetic hyperthermia (MHT) is a therapy that uses the heat generated by a magnetic material for cancer treatment. Magnetite nanoparticles are the most used materials in MHT. However, magnetite has a high Curie temperature (Tc~580 °C), and its use may generate [...] Read more.
Magnetic hyperthermia (MHT) is a therapy that uses the heat generated by a magnetic material for cancer treatment. Magnetite nanoparticles are the most used materials in MHT. However, magnetite has a high Curie temperature (Tc~580 °C), and its use may generate local superheating. To overcome this problem, strontium-doped lanthanum manganite could replace magnetite because it shows a Tc near the ideal range (42–45 °C). In this study, we developed a smart composite formed by an F18 bioactive glass matrix with different amounts of Lanthanum-Strontium Manganite (LSM) powder (5, 10, 20, and 30 wt.% LSM). The effect of LSM addition was analyzed in terms of sinterability, magnetic properties, heating ability under a magnetic field, and in vitro bioactivity. The saturation magnetization (Ms) and remanent magnetization (Mr) increased by the LSM content, the confinement of LSM particles within the bioactive glass matrix also caused an increase in Tc. Calorimetry evaluation revealed a temperature increase from 5 °C (composition LSM5) to 15 °C (LSM30). The specific absorption rates were also calculated. Bioactivity measurements demonstrated HCA formation on the surface of all the composites in up to 15 days. The best material reached 40 °C, demonstrating the proof of concept sought in this research. Therefore, these composites have great potential for bone cancer therapy and should be further explored. Full article
(This article belongs to the Section Advanced and Functional Ceramics and Glasses)
Show Figures

Figure 1

14 pages, 3978 KiB  
Article
Improvement of La0.8Sr0.2MnO3−δ Cathode Material for Solid Oxide Fuel Cells by Addition of YFe0.5Co0.5O3
by Michał Mosiałek, Małgorzata Zimowska, Dzmitry Kharytonau, Anna Komenda, Miłosz Górski and Marcel Krzan
Materials 2022, 15(2), 642; https://doi.org/10.3390/ma15020642 - 15 Jan 2022
Cited by 8 | Viewed by 3018
Abstract
The high efficiency of solid oxide fuel cells with La0.8Sr0.2MnO3−δ (LSM) cathodes working in the range of 800–1000 °C, rapidly decreases below 800 °C. The goal of this study is to improve the properties of LSM cathodes working [...] Read more.
The high efficiency of solid oxide fuel cells with La0.8Sr0.2MnO3−δ (LSM) cathodes working in the range of 800–1000 °C, rapidly decreases below 800 °C. The goal of this study is to improve the properties of LSM cathodes working in the range of 500–800 °C by the addition of YFe0.5Co0.5O3 (YFC). Monophasic YFC is synthesized and sintered at 950 °C. Composite cathodes are prepared on Ce0.8Sm0.2O1.9 electrolyte disks using pastes containing YFC and LSM powders mixed in 0:1, 1:19, and 1:1 weight ratios denoted LSM, LSM1, and LSM1, respectively. X-ray diffraction patterns of tested composites reveal the presence of pure perovskite phases in samples sintered at 950 °C and the presence of Sr4Fe4O11, YMnO3, and La0.775Sr0.225MnO3.047 phases in samples sintered at 1100 °C. Electrochemical impedance spectroscopy reveals that polarization resistance increases from LSM1, by LSM, to LSM2. Differences in polarization resistance increase with decreasing operating temperatures because activation energy rises in the same order and equals to 1.33, 1.34, and 1.58 eV for LSM1, LSM, and LSM2, respectively. The lower polarization resistance of LSM1 electrodes is caused by the lower resistance associated with the charge transfer process. Full article
(This article belongs to the Special Issue Solid Oxide Fuel Cells (SOFCs): From Design to Applications)
Show Figures

Figure 1

10 pages, 2491 KiB  
Article
A Robust and Highly Precise Alternative against the Proliferation of Intestinal Carcinoma and Human Hepatocellular Carcinoma Cells Based on Lanthanum Strontium Manganite Nanoparticles
by Ali Omar Turky, Miral A. Abdelmoaz, Mahmoud M. Hessien, Ali M. Hassan, Mikhael Bechelany, Emad M. Ewais and Mohamed M. Rashad
Materials 2021, 14(17), 4979; https://doi.org/10.3390/ma14174979 - 31 Aug 2021
Cited by 5 | Viewed by 1991
Abstract
In this report, lanthanum strontium manganite at different Sr2+ ion concentrations, as well as Gd3+ or Sm3+ ion substituted La0.5−YMYSr0.5MnO3 (M = Gd and Sm, y = 0.2), have been purposefully tailored [...] Read more.
In this report, lanthanum strontium manganite at different Sr2+ ion concentrations, as well as Gd3+ or Sm3+ ion substituted La0.5−YMYSr0.5MnO3 (M = Gd and Sm, y = 0.2), have been purposefully tailored using a sol gel auto-combustion approach. XRD profiles confirmed the formation of a monoclinic perovskite phase. FE-SEM analysis displayed a spherical-like structure of the La0.8Sr0.2MnO3 and La0.3Gd0.2Sr0.2MnO3 samples. The particle size of the LSM samples was found to decrease with increased Sr2+ ion concentration. For the first time, different LSM concentrations were inspected for their cytotoxic activity against CACO-2 (intestinal carcinoma cells) and HepG-2 (human hepatocellular carcinoma cells). The cell viability for CACO-2 and HepG-2 was assayed and seen to decrease depending on the Sr2+ ion concentration. Half maximal inhibitory concentration IC50 of CACO-2 cell and HepG-2 cell inhibition was connected with Sr2+ ion ratio. Low IC50 was noticable at low Sr2+ ion content. Such results were correlated to the particle size and the morphology. Indeed, the IC50 of CACO-2 cell inhibition by LSM at a strontium content of 0.2 was 5.63 ± 0.42 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be = 25 ± 2.7 µg/mL. Meanwhile, the IC50 of HepG-2 cell inhibition by LSM at a strontium content of 0.2 was 6.73 ± 0.4 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be 31± 3.1 µg/mL. All LSM samples at different conditions were tested as antimicrobial agents towards fungi, Gram positive bacteria, and Gram negative bacteria. For instance, all LSM samples were found to be active towards Gram negative bacteria Escherichia coli, whereas some samples have presumed antimicrobial effect towards Gram negative bacteria Proteus vulgaris. Such results confirmed that LSM samples possessed cytotoxicity against CACO-2 and HepG-2 cells, and they could be considered to play a substantial role in pharmaceutical and therapeutic applications. Full article
Show Figures

Figure 1

16 pages, 8459 KiB  
Article
Thermal Spray Multilayer Ceramic Structures with Potential for Solid Oxide Cell Applications
by Michail Vardavoulias, Paraskevi Gkomoza, Michael Arkas, Dimitrios K. Niakolas and Stylianos G. Neophytides
Coatings 2021, 11(6), 682; https://doi.org/10.3390/coatings11060682 - 5 Jun 2021
Cited by 2 | Viewed by 3232
Abstract
The objective of this paper is to manufacture free-standing solid oxide cells (SOCs) through the atmospheric plasma spray process (APS), without the aid of a metallic support nor the need for a post-process heating treatment. A five-layered cell was fabricated. Fused and crushed [...] Read more.
The objective of this paper is to manufacture free-standing solid oxide cells (SOCs) through the atmospheric plasma spray process (APS), without the aid of a metallic support nor the need for a post-process heating treatment. A five-layered cell was fabricated. Fused and crushed yttria-stabilized zirconia (YSZ) powder in the 5–22 μm particle size range was used in order to achieve a dense electrolyte layer, yet still permitting satisfactory ionic diffusivity. Nickel oxide (NiO) powder that was obtained by in-house flame spray (FS) oxidation of pure nickel (Ni) powder was mixed and sprayed with the original Ni-YSZ feedstock, so as to increase the porosity content in the supporting electrode. Two transition layers were sprayed, the first between the support electrode and the electrolyte (25% (Ni/NiO)–75% YSZ) and the second at the electrolyte and the end electrode interface (50% YSZ–50% lanthanum strontium manganite (LSM)). The purpose of intercalation of these transition layers was to facilitate the ionic motion and also to eliminate thermal expansion mismatches. All the as-sprayed layers were separately tested by an in-house developed acetone permeability comparative test (APCT). Electrodes with adequate porosity (25–30%) were obtained. Concerning electrolytes, relatively thick (150–200 µm) layers derived from fused and crushed YSZ were found to be impermeable to acetone, while thinner YSZ counterparts of less than 100 µm showed a low degree of permeability, which was attributed mostly to existent microcracks and insufficient interparticle cohesion, rather than to interconnected porosity. Full article
Show Figures

Figure 1

8 pages, 3774 KiB  
Article
Femtosecond Laser Additive Manufacturing of Multi-Material Layered Structures
by Shuang Bai and Jian Liu
Appl. Sci. 2020, 10(3), 979; https://doi.org/10.3390/app10030979 - 3 Feb 2020
Cited by 10 | Viewed by 4089
Abstract
Laser additive manufacturing (LAM) of a multi-material multi-layer structure was investigated using femtosecond fiber lasers. A thin layer of yttria-stabilized zirconia (YSZ) and a Ni–YSZ layer were additively manufactured to form the electrolyte and anode support of a solid oxide fuel cell (SOFC). [...] Read more.
Laser additive manufacturing (LAM) of a multi-material multi-layer structure was investigated using femtosecond fiber lasers. A thin layer of yttria-stabilized zirconia (YSZ) and a Ni–YSZ layer were additively manufactured to form the electrolyte and anode support of a solid oxide fuel cell (SOFC). A lanthanum strontium manganite (LSM) layer was then added to form a basic three layer cell. This single step process eliminates the need for binders and post treatment. Parameters including laser power, scan speed, scan pattern, and hatching space were systematically evaluated to obtain optimal density and porosity. This is the first report to build a complete and functional fuel cell by using the LAM approach. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

18 pages, 14032 KiB  
Article
Performance of a Direct Methane Solid Oxide Fuel Cell Using Nickel-Ceria-Yttria Stabilized Zirconia as the Anode
by María José Escudero, María Pilar Yeste, Miguel Ángel Cauqui and Miguel Ángel Muñoz
Materials 2020, 13(3), 599; https://doi.org/10.3390/ma13030599 - 28 Jan 2020
Cited by 17 | Viewed by 4020
Abstract
A nickel-ceria-yttria stabilized zirconia (Ni-CYSZ) cermet material was synthesized and tested as the anode for the direct oxidation of methane in a solid oxide fuel cell (SOFC) with YSZ as the electrolyte and strontium-doped lanthanum manganite (LSM) as the cathode. Initially, the electrochemical [...] Read more.
A nickel-ceria-yttria stabilized zirconia (Ni-CYSZ) cermet material was synthesized and tested as the anode for the direct oxidation of methane in a solid oxide fuel cell (SOFC) with YSZ as the electrolyte and strontium-doped lanthanum manganite (LSM) as the cathode. Initially, the electrochemical behavior was investigated under several load demands in wet (3% H2O) CH4 at 850 °C during 144 h using I-V curves, impedance spectra, and potentiostatic measurements. Long-term tests were subsequently conducted under 180 mA·cm–2 in wet CH4 for 236 h and dry CH4 for 526 h at 850 °C in order to assess the cell stability. Material analysis was carried out by SEM-EDS after operation was complete. Similar cell performance was observed with wet (3% H2O) and dry CH4, and this indicates that the presence of water is not relevant under the applied load demand. Impedance spectra of the cell showed that at least three processes govern the direct electrochemical oxidation of methane on the Ni-CYSZ anode and these are related to charge transfer at high frequency, the adsorption/desorption of charged species at medium frequency and the non-charge transfer processes at low frequency. The cell was operated for more than 900 h in CH4 and 806 h under load demand, with a low degradation rate of ~0.2 mV·h–1 observed during this period. The low degradation in performance was mainly caused by the increase in charge transfer resistance, which can be attributed to carbon deposition on the anode causing a reduction in the number of active centers. Carbon deposits were detected mostly on the surface of Ni particles but not near the anode/electrolyte interface or the cerium surface. Therefore, the incorporation of cerium in the anode structure could improve the cell lifetime by reducing carbon formation. Full article
(This article belongs to the Special Issue Advanced Nanocatalyst for Methane Oxidation)
Show Figures

Graphical abstract

10 pages, 4195 KiB  
Article
Rate-Determining Steps of Oxygen Surface Exchange Kinetics on Sr2Fe1.5Mo0.5O6−δ
by Denis A. Osinkin, Anna V. Khodimchuk, Natalia M. Porotnikova, Nina M. Bogdanovich, Andrey V. Fetisov and Maxim V. Ananyev
Energies 2020, 13(1), 250; https://doi.org/10.3390/en13010250 - 3 Jan 2020
Cited by 28 | Viewed by 3464
Abstract
The oxygen surface kinetics of Sr2Fe1.5Mo0.5O6−δ was determined using the 16O2/18O2 isotope exchange method with gas phase analysis at 600–800 °C. The heterogeneous exchange rates (rH) and [...] Read more.
The oxygen surface kinetics of Sr2Fe1.5Mo0.5O6−δ was determined using the 16O2/18O2 isotope exchange method with gas phase analysis at 600–800 °C. The heterogeneous exchange rates (rH) and the oxygen diffusion coefficients (D) were calculated by processing the concentration dependences of the 18O fraction using Ezin’s model. The rates of oxygen dissociative adsorption (ra) and incorporation (ri) were calculated based on a model using the three exchange type rates. It has been established that the rates ra and ri were comparable in this temperature range. Assumptions were made about the effect of the chemical composition of the surface on the rate of oxygen adsorption. It was found that the oxygen exchange coefficient (k) of Sr2Fe1.5Mo0.5O6−δ is comparable to that of La0.6Sr0.4MnO3±δ oxide. High values of the oxygen diffusion coefficient were found for Sr2Fe1.5Mo0.5O6−δ. The values were comparable to those of the double cobaltite praseodymium-barium and exceed by more than an order those of lanthanum-strontium manganite. Full article
Show Figures

Figure 1

9 pages, 1899 KiB  
Article
Fabrication of Lanthanum Strontium Manganite Ceramics via Agar Gel Casting and Solid State Sintering
by Shiyu Zhang, Cheng Peng, Chengzhi Guan, Guoping Xiao and Jianqiang Wang
Materials 2019, 12(6), 848; https://doi.org/10.3390/ma12060848 - 13 Mar 2019
Cited by 7 | Viewed by 3091
Abstract
Fabricating lanthanum strontium manganite (LSM) ceramics with certain shapes is important for the design and construction of high-temperature energy conversion and storage devices. Here, we describe a low-cost and environmentally friendly method for fabricating LSM ceramics via agar gel casting and high temperature [...] Read more.
Fabricating lanthanum strontium manganite (LSM) ceramics with certain shapes is important for the design and construction of high-temperature energy conversion and storage devices. Here, we describe a low-cost and environmentally friendly method for fabricating LSM ceramics via agar gel casting and high temperature sintering. This new approach uses temperature tuning to fabricate LSM gel bodies, not only by manufacturing in the secondary process but also by remolding and recycling during the gel casting process. The effect of the sintering temperature on the properties of LSM ceramics was investigated as well. As a result, the porosity and compressive strength of LSM ceramics sintered at 1000 °C are ~60% and 5.6 MPa, respectively. When the sintering temperature increases to 1200 °C, the porosity decreases to ~28%, whereas the compressive strength increases to 25 MPa, which is able to meet the requirement of cathode-supported SOFCs (solid oxide fuel cells). Full article
Show Figures

Figure 1

11 pages, 2599 KiB  
Article
Anion Doping of Ferromagnetic Thin Films of La0.74Sr0.26MnO3−δ via Topochemical Fluorination
by Parvathy Anitha Sukkurji, Alan Molinari, Christian Reitz, Ralf Witte, Christian Kübel, Venkata Sai Kiran Chakravadhanula, Robert Kruk and Oliver Clemens
Materials 2018, 11(7), 1204; https://doi.org/10.3390/ma11071204 - 13 Jul 2018
Cited by 19 | Viewed by 4946
Abstract
Chemical doping via insertion of ions into the lattice of a host material is a key strategy to flexibly manipulate functionalities of materials. In this work, we present a novel case study on the topotactic insertion of fluoride ions into oxygen-deficient ferromagnetic thin [...] Read more.
Chemical doping via insertion of ions into the lattice of a host material is a key strategy to flexibly manipulate functionalities of materials. In this work, we present a novel case study on the topotactic insertion of fluoride ions into oxygen-deficient ferromagnetic thin films of La0.74Sr0.26MnO3−δ (LSMO) epitaxially grown onto single-crystal SrTiO3 (STO) substrates. The effect of fluorination on the film structure, composition, and magnetic properties is compared with the case of oxygen-deficient and fully-oxidized LSMO films. Although incorporation of F anions does not significantly alter the volume of the LSMO unit cell, a strong impact on the magnetic characteristics, including a remarkable suppression of Curie temperature and saturation magnetization accompanied by an increase in magnetic coercivity, was found. The change in magnetic properties can be ascribed to the disruption of the ferromagnetic exchange interactions along Mn-anion-Mn chains driven by F doping into the LSMO lattice. Our results indicate that F doping is a powerful means to effectively modify the magnetic functional properties of perovskite manganites. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

13 pages, 3205 KiB  
Article
Effects of Electrode Composition and Thickness on the Mechanical Performance of a Solid Oxide Fuel Cell
by Xiurong Fang, Jiang Zhu and Zijing Lin
Energies 2018, 11(7), 1735; https://doi.org/10.3390/en11071735 - 2 Jul 2018
Cited by 57 | Viewed by 4422
Abstract
Mechanical damage is a major factor limiting the long-term stability of solid oxide fuel cells (SOFCs). Here, the mechanical stability of planar SOFCs consisting of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode (Ni=Nickel, YSZ=yttria-stabilized zirconia, LSM=lanthanum strontium manganite) is analyzed by a structural mechanics model with [...] Read more.
Mechanical damage is a major factor limiting the long-term stability of solid oxide fuel cells (SOFCs). Here, the mechanical stability of planar SOFCs consisting of Ni-YSZ anode/YSZ electrolyte/LSM-YSZ cathode (Ni=Nickel, YSZ=yttria-stabilized zirconia, LSM=lanthanum strontium manganite) is analyzed by a structural mechanics model with composition dependent mechanical properties. Influencing factors considered include: the Ni and LSM volume fractions, the thicknesses of anode, cathode and electrolyte layers, and the cell types of anode-, cathode-, and electrolyte-supported designs. It is found that (i) the anode failure probability increases with the Ni content. However, SOFCs remain mechanically safe if the Ni volume fraction is below 65%. (ii) An LSM volume fraction of over 40% is required to maintain the mechanical integrity of cathode. (iii) For an anode-supported cell with a 20 μm thick electrolyte, the anode thickness should be more than 0.5 mm to be mechanically stable. (iv) The anode-supported cell is found to be mechanically safer than that of the electrolyte-supported cell. Full article
(This article belongs to the Section I: Energy Fundamentals and Conversion)
Show Figures

Figure 1

14 pages, 2195 KiB  
Article
On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering
by Yishu Wang, Minghui Zhang and Efstathios I. Meletis
Coatings 2015, 5(4), 802-815; https://doi.org/10.3390/coatings5040802 - 11 Nov 2015
Cited by 2 | Viewed by 6475
Abstract
We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 [...] Read more.
We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF) magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD) and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties. Full article
Show Figures

Graphical abstract

Back to TopTop