Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (122)

Search Parameters:
Keywords = lamins A/C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 9384 KiB  
Case Report
Cardiac Phenotype Associated with Two Heterozygous LMNA Variants
by Aura Siikjärvi, Krista Heliö, Tiina Heliö and Miia Holmström
Cardiogenetics 2025, 15(2), 13; https://doi.org/10.3390/cardiogenetics15020013 - 1 May 2025
Viewed by 947
Abstract
Background: Laminopathies are a heterogenous group of heritable diseases caused by variants in the Lamin A/C gene (LMNA). They manifest as cardiac and muscular myopathies, lipodystrophies, neuropathies, and progeria. Cardiac manifestations include dilated cardiomyopathy and arrhythmias. Case presentation: A Finnish woman [...] Read more.
Background: Laminopathies are a heterogenous group of heritable diseases caused by variants in the Lamin A/C gene (LMNA). They manifest as cardiac and muscular myopathies, lipodystrophies, neuropathies, and progeria. Cardiac manifestations include dilated cardiomyopathy and arrhythmias. Case presentation: A Finnish woman in her 40s who was found to carry two heterozygous likely pathogenic (LP) variants in LMNA, c.1003C>T p.Arg335Trp and c.1303C>T p.Arg435Cys. She was diagnosed with dilated cardiomyopathy and received cardiac resynchronization therapy with a defibrillator. Conclusions: Double heterozygous LMNA variants are exceedingly rare. Even though the patient presented with two LP variants, the age of onset was typical, and the phenotype was not markedly more severe than in those with only one LP variant. Full article
(This article belongs to the Section Rare Disease-Genetic Syndromes)
Show Figures

Figure 1

19 pages, 3638 KiB  
Article
A Portable Magnetoelectric Gaussmeter Based on Torque Effect
by Jingen Wu, Jiacheng Qiao, Xianfeng Liang, Yongjun Du, Jieqiang Gao, Yiwei Xu, Jinghong Guo, Min Lu, Ming Zhang and Zhongqiang Hu
Sensors 2025, 25(3), 855; https://doi.org/10.3390/s25030855 - 31 Jan 2025
Viewed by 2857
Abstract
A giant magnetoelectric coefficient has been discovered in laminated magnetoelectric composites incorporating piezoelectric and magnetostrictive layers, which reveals a high sensitivity in AC magnetic field detection under a DC bias field. However, the DC-biased magnetoelectric composites are not capable of detecting DC magnetic [...] Read more.
A giant magnetoelectric coefficient has been discovered in laminated magnetoelectric composites incorporating piezoelectric and magnetostrictive layers, which reveals a high sensitivity in AC magnetic field detection under a DC bias field. However, the DC-biased magnetoelectric composites are not capable of detecting DC magnetic fields due to the interference with the DC signal to be measured. Here, we demonstrate a portable magnetoelectric gaussmeter based on torque effect that can detect both DC and AC magnetic fields. The proposed gaussmeter is equipped with a magnetoelectric sensor, a charge amplification module, a signal processing circuit, a power module, a data processing program, a display module, etc. The proposed gaussmeter indicates such performance indexes as an intensity range of 0~10 Oe, frequency range of DC~500 Hz, AC detection limit of 0.01 Oe, DC detection limit of 0.08 Oe, and frequency resolution of 1 Hz. Being powered by a power adapter (or a battery) of 5V 2A, the whole device system is pocket-size, low-cost, and highly portable, demonstrating its potential for magnetic field detection as a distributed sensor. Full article
(This article belongs to the Special Issue Advanced Sensing and Measurement Control Applications)
Show Figures

Figure 1

12 pages, 1071 KiB  
Article
Identification of Biomarkers of Arrhythmogenic Cardiomyopathy (ACM) by Plasma Proteomics
by Sinda Zarrouk, Houda Ben-Miled, Nadia Rahali, Josef Finsterer and Fatma Ouarda
Medicina 2025, 61(1), 105; https://doi.org/10.3390/medicina61010105 - 13 Jan 2025
Viewed by 1094
Abstract
Background and Objectives: The pathophysiology of arrhythmogenic cardiomyopathy (ACM), previously known as arrhythmogenic right ventricular cardiomyopathy (ARVC), and its specific biological features remain poorly understood. High-throughput plasma proteomic profiling, a powerful tool for gaining insights into disease pathophysiology at the systems biology level, [...] Read more.
Background and Objectives: The pathophysiology of arrhythmogenic cardiomyopathy (ACM), previously known as arrhythmogenic right ventricular cardiomyopathy (ARVC), and its specific biological features remain poorly understood. High-throughput plasma proteomic profiling, a powerful tool for gaining insights into disease pathophysiology at the systems biology level, has not been used to study ACM. This study aimed at characterizing plasmatic protein changes in patients with ACM, which were compared with those of healthy controls, and at exploring the potential role of the identified proteins as biomarkers for diagnosis and monitoring. Materials and Methods: Blood samples were collected from six ACM patients, four patients with other cardiomyopathies, and two healthy controls. Plasma was processed to remove high-abundance proteins and analyzed by two-dimensional gel electrophoresis. Differential protein expressions were assessed using PDQuest software, Bio-Rad US version 8.0.1. Results: The analysis revealed several proteins with altered expressions between ACM patients and controls, including plakophilin-2, junctional plakoglobin, desmoplakin, desmin, transmembrane protein 43, and lamin A/C. Conclusions: The plasma proteomic profiling of ACM suggests that ACM is a distinct disease entity characterized by a unique dysregulation of desmosomal proteins. The identification of plasma biomarkers associated with ACM underscores their potential to improve diagnostic accuracy and facilitate early intervention strategies. Further exploration of mutations in desmosomal proteins and their phosphorylation states may provide deeper insights into the pathophysiology of ACM. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

35 pages, 4557 KiB  
Review
A Review of Segmented Stator and Rotor Designs in AC Electric Machines: Opportunities and Challenges
by Bhuvan Khoshoo, Anmol Aggarwal and Shanelle Foster
Eng 2025, 6(1), 7; https://doi.org/10.3390/eng6010007 - 1 Jan 2025
Cited by 1 | Viewed by 2712
Abstract
The use of segmented stator and rotor designs in AC electric machine construction offers several significant advantages, including a high-copper fill factor, increased torque density, improved field-weakening performance, simplified manufacturing processes, and enhanced mechanical strength. Additionally, segmented designs allow for the incorporation of [...] Read more.
The use of segmented stator and rotor designs in AC electric machine construction offers several significant advantages, including a high-copper fill factor, increased torque density, improved field-weakening performance, simplified manufacturing processes, and enhanced mechanical strength. Additionally, segmented designs allow for the incorporation of oriented steel—either partially or fully—which exhibits excellent magnetic properties in the rolling direction, resulting in more efficient machine performance. However, lamination segmentation also introduces challenges. Parasitic air gaps between segments and an increased number of cut edges in the assembled stack can alter the magnetic properties of the machine, potentially leading to degraded performance. Furthermore, the use of oriented steel remains complex, as its highly nonlinear magnetic properties vary depending on the direction of the magnetic flux. This paper reviews the widely adopted stator and rotor segmentation techniques available in the literature, discussing their potential benefits and limitations. It also covers key aspects such as popular manufacturing approaches, the impact of segmentation on machine performance, advanced finite-element analysis (FEA) techniques for numerical modeling, and experimental methods for evaluating the performance of segmented stator and rotor constructions in AC machines. By addressing these areas, this work provides a comprehensive resource for machine designers seeking to develop AC machines with segmented stators and rotors. Full article
(This article belongs to the Special Issue Women in Engineering)
Show Figures

Figure 1

18 pages, 9775 KiB  
Article
Divergent Contribution of Cytoplasmic Actins to Nuclear Structure of Lung Cancer Cells
by Galina Shagieva, Vera Dugina, Anton Burakov, Yulia Levuschkina, Dmitry Kudlay, Sergei Boichuk, Natalia Khromova, Maria Vasileva and Pavel Kopnin
Int. J. Mol. Sci. 2024, 25(24), 13607; https://doi.org/10.3390/ijms252413607 - 19 Dec 2024
Viewed by 1218
Abstract
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences [...] Read more.
A growing body of evidence suggests that actin plays a role in nuclear architecture, genome organisation, and regulation. Our study of human lung adenocarcinoma cells demonstrates that the equilibrium between actin isoforms affects the composition of the nuclear lamina, which in turn influences nuclear stiffness and cellular behaviour. The downregulation of β-actin resulted in an increase in nuclear area, accompanied by a decrease in A-type lamins and an enhancement in lamin B2. In contrast, the suppression of γ-actin led to upregulation of the lamin A/B ratio through an increase in A-type lamins. Histone H3 post-translational modifications display distinct patterns in response to decreased actin isoform expression. The level of dimethylated H3K9me2 declined while acetylated H3K9ac increased in β-actin-depleted A549 cells. In contrast, the inhibition of γ-actin expression resulted in a reduction in H3K9ac. Based on our observations, we propose that β-actin plays a role in chromatin compaction and deactivation, and is involved in the elevation of nuclear stiffness through the control of the lamins ratio. The non-muscle γ-actin is presumably responsible for chromatin decondensation and activation. The identification of novel functions for actin isoforms offers insights into the mechanisms through which they influence cell fate during development and cancer progression. Full article
Show Figures

Figure 1

12 pages, 3194 KiB  
Case Report
Imaging-Based Molecular Interaction Between Src and Lamin A/C Mechanosensitive Proteins in the Nucleus of Laminopathic Cells
by Stefania Petrini, Giulia Bagnato, Michela Piccione, Valentina D’Oria, Valentina Apollonio, Marco Cappa, Claudia Castiglioni, Filippo Maria Santorelli, Teresa Rizza, Rosalba Carrozzo, Enrico Silvio Bertini and Barbara Peruzzi
Int. J. Mol. Sci. 2024, 25(24), 13365; https://doi.org/10.3390/ijms252413365 - 13 Dec 2024
Viewed by 1188
Abstract
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed [...] Read more.
Laminopathies represent a wide range of genetic disorders caused by mutations in gene-encoding proteins of the nuclear lamina. Altered nuclear mechanics have been associated with laminopathies, given the key role of nuclear lamins as mechanosensitive proteins involved in the mechanotransduction process. To shed light on the nuclear partners cooperating with altered lamins, we focused on Src tyrosine kinase, known to phosphorylate proteins of the nuclear lamina. Here, we demonstrated a tight relationship between lamin A/C and Src in skin fibroblasts from two laminopathic patients, assessed by advanced imaging-based microscopy techniques. With confocal laser scanning and Stimulated Emission Depletion (STED) microscopy, a statistically significant higher co-distribution between the two proteins was observed in patients’ fibroblasts. Furthermore, the time-domain fluorescence lifetime imaging microscopy, combined with Förster resonance energy transfer detection, demonstrated a decreased lifetime value of Src (as donor fluorophore) in the presence of lamin A/C (as acceptor dye) in double-stained fibroblast nuclei in both healthy cells and patients’ cells, thereby indicating a molecular interaction that resulted significantly higher in laminopathic cells. All these results demonstrate a molecular interaction between Src and lamin A/C in healthy fibroblasts and their aberrant interaction in laminopathic nuclei, thus creating the possibilities of new diagnostic and therapeutic approaches for patients. Full article
(This article belongs to the Special Issue Protein Signal Transduction in the Nucleus)
Show Figures

Figure 1

15 pages, 3466 KiB  
Article
PD-Free Design of Insulation Systems: An Application to Laminated Busbars
by Gian Carlo Montanari and Pasquale Cambareri
Appl. Sci. 2024, 14(22), 10171; https://doi.org/10.3390/app142210171 - 6 Nov 2024
Viewed by 1017
Abstract
The reliability of components of industrial electrical assets fed by power electronics might be at risk due to the type and extent of electrothermal stresses. The move of power electronics toward higher levels of voltage, switching frequency, slew rate, and specific power increases [...] Read more.
The reliability of components of industrial electrical assets fed by power electronics might be at risk due to the type and extent of electrothermal stresses. The move of power electronics toward higher levels of voltage, switching frequency, slew rate, and specific power increases the risk of partial discharge inception and thus of accelerated extrinsic aging and premature failure. The reaction to this challenge is to embrace the concept of partial discharge-free (PD-free) design and operation. This paper presents a PD-free approach to the design of laminated busbars, considering both AC and DC insulation subsystems, and focusing on surface insulation. The availability of a recently proposed model to estimate the inception field is a key tool. The model is validated through PD measurements performed on a laminated busbar, using new automatic software that can identify the type of source generating PD. Combined with electric field calculations, the model provides estimates of the PD inception voltage which are almost coincident with the measurement results. Inception voltages in the order of 10 kV and 20 kV have been observed for AC and DC excitation, respectively. In the case of DC supply, tests at different ambient temperatures, 25 °C and 60 °C, indicate that the inception voltage does not change significantly with temperature. Disposability, scalability to any voltage/power, and capability to work, potentially, for any other type of insulation system, are interesting features of the proposed approach, which are discussed in the paper. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

18 pages, 2529 KiB  
Review
3D-Q-FISH/Telomere/TRF2 Nanotechnology Identifies a Progressively Disturbed Telomere/Shelterin/Lamin AC Complex as the Common Pathogenic, Molecular/Spatial Denominator of Classical Hodgkin Lymphoma
by Hans Knecht, Tina Petrogiannis-Haliotis, Sherif Louis and Sabine Mai
Cells 2024, 13(21), 1748; https://doi.org/10.3390/cells13211748 - 23 Oct 2024
Viewed by 1748
Abstract
The bi- or multinucleated Reed–Sternberg cell (RS) is the diagnostic cornerstone of Epstein–Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to [...] Read more.
The bi- or multinucleated Reed–Sternberg cell (RS) is the diagnostic cornerstone of Epstein–Barr Virus (EBV)-positive and EBV-negative classical Hodgkin lymphoma (cHL). cHL is a germinal center (GC)-derived B-cell disease. Hodgkin cells (H) are the mononuclear precursors of RS. An experimental model has to fulfill three conditions to qualify as common pathogenic denominator: (i) to be of GC-derived B-cell origin, (ii) to be EBV-negative to avoid EBV latency III expression and (iii) to support permanent EBV-encoded oncogenic latent membrane protein (LMP1) expression upon induction. These conditions are unified in the EBV-, diffuse large B-Cell lymphoma (DLBCL) cell line BJAB-tTA-LMP1. 3D reconstructive nanotechnology revealed spatial, quantitative and qualitative disturbance of telomere/shelterin interactions in mononuclear H-like cells, with further progression during transition to RS-like cells, including progressive complexity of the karyotype with every mitotic cycle, due to BBF (breakage/bridge/fusion) events. The findings of this model were confirmed in diagnostic patient samples and correlate with clinical outcomes. Moreover, in vitro, significant disturbance of the lamin AC/telomere interaction progressively occurred. In summary, our research over the past three decades identified cHL as the first lymphoid malignancy driven by a disturbed telomere/shelterin/lamin AC interaction, generating the diagnostic RS. Our findings may act as trailblazer for tailored therapies in refractory cHL. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Lymphomas)
Show Figures

Figure 1

15 pages, 40327 KiB  
Review
How the Oocyte Nucleolus Is Turned into a Karyosphere: The Role of Heterochromatin and Structural Proteins
by Venera Nikolova, Maya Markova, Ralitsa Zhivkova, Irina Chakarova, Valentina Hadzhinesheva and Stefka Delimitreva
J. Dev. Biol. 2024, 12(4), 28; https://doi.org/10.3390/jdb12040028 - 18 Oct 2024
Viewed by 2177
Abstract
Oocyte meiotic maturation includes large-scale chromatin remodeling as well as cytoskeleton and nuclear envelope rearrangements. This review addresses the dynamics of key cytoskeletal proteins (tubulin, actin, vimentin, and cytokeratins) and nuclear envelope proteins (lamin A/C, lamin B, and the nucleoporin Nup160) in parallel [...] Read more.
Oocyte meiotic maturation includes large-scale chromatin remodeling as well as cytoskeleton and nuclear envelope rearrangements. This review addresses the dynamics of key cytoskeletal proteins (tubulin, actin, vimentin, and cytokeratins) and nuclear envelope proteins (lamin A/C, lamin B, and the nucleoporin Nup160) in parallel with chromatin reorganization in maturing mouse oocytes. A major feature of this reorganization is the concentration of heterochromatin into a spherical perinucleolar rim called surrounded nucleolus or karyosphere. In early germinal vesicle (GV) oocytes with non-surrounded nucleolus (without karyosphere), lamins and Nup160 are at the nuclear envelope while cytoplasmic cytoskeletal proteins are outside the nucleus. At the beginning of karyosphere formation, lamins and Nup160 follow the heterochromatin relocation assembling a new spherical structure in the GV. In late GV oocytes with surrounded nucleolus (fully formed karyosphere), the nuclear envelope gradually loses its integrity and cytoplasmic cytoskeletal proteins enter the nucleus. At germinal vesicle breakdown, lamin B occupies the karyosphere interior while all the other proteins stay at the karyosphere border or connect to chromatin. In metaphase oocytes, lamin A/C surrounds the spindle, Nup160 localizes to its poles, actin and lamin B are attached to the spindle fibers, and cytoplasmic intermediate filaments associate with both the spindle fibers and the metaphase chromosomes. Full article
(This article belongs to the Special Issue Feature Papers from Journal of Developmental Biology Reviewers)
Show Figures

Figure 1

34 pages, 13933 KiB  
Article
LMNA-Related Dilated Cardiomyopathy: Single-Cell Transcriptomics during Patient-Derived iPSC Differentiation Support Cell Type and Lineage-Specific Dysregulation of Gene Expression and Development for Cardiomyocytes and Epicardium-Derived Cells with Lamin A/C Haploinsufficiency
by Michael V. Zaragoza, Thuy-Anh Bui, Halida P. Widyastuti, Mehrsa Mehrabi, Zixuan Cang, Yutong Sha, Anna Grosberg and Qing Nie
Cells 2024, 13(17), 1479; https://doi.org/10.3390/cells13171479 - 3 Sep 2024
Cited by 2 | Viewed by 3424
Abstract
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins [...] Read more.
LMNA-related dilated cardiomyopathy (DCM) is an autosomal-dominant genetic condition with cardiomyocyte and conduction system dysfunction often resulting in heart failure or sudden death. The condition is caused by mutation in the Lamin A/C (LMNA) gene encoding Type-A nuclear lamin proteins involved in nuclear integrity, epigenetic regulation of gene expression, and differentiation. The molecular mechanisms of the disease are not completely understood, and there are no definitive treatments to reverse progression or prevent mortality. We investigated possible mechanisms of LMNA-related DCM using induced pluripotent stem cells derived from a family with a heterozygous LMNA c.357-2A>G splice-site mutation. We differentiated one LMNA-mutant iPSC line derived from an affected female (Patient) and two non-mutant iPSC lines derived from her unaffected sister (Control) and conducted single-cell RNA sequencing for 12 samples (four from Patients and eight from Controls) across seven time points: Day 0, 2, 4, 9, 16, 19, and 30. Our bioinformatics workflow identified 125,554 cells in raw data and 110,521 (88%) high-quality cells in sequentially processed data. Unsupervised clustering, cell annotation, and trajectory inference found complex heterogeneity: ten main cell types; many possible subtypes; and lineage bifurcation for cardiac progenitors to cardiomyocytes (CMs) and epicardium-derived cells (EPDCs). Data integration and comparative analyses of Patient and Control cells found cell type and lineage-specific differentially expressed genes (DEGs) with enrichment, supporting pathway dysregulation. Top DEGs and enriched pathways included 10 ZNF genes and RNA polymerase II transcription in pluripotent cells (PP); BMP4 and TGF Beta/BMP signaling, sarcomere gene subsets and cardiogenesis, CDH2 and EMT in CMs; LMNA and epigenetic regulation, as well as DDIT4 and mTORC1 signaling in EPDCs. Top DEGs also included XIST and other X-linked genes, six imprinted genes (SNRPN, PWAR6, NDN, PEG10, MEG3, MEG8), and enriched gene sets related to metabolism, proliferation, and homeostasis. We confirmed Lamin A/C haploinsufficiency by allelic expression and Western blot. Our complex Patient-derived iPSC model for Lamin A/C haploinsufficiency in PP, CM, and EPDC provided support for dysregulation of genes and pathways, many previously associated with Lamin A/C defects, such as epigenetic gene expression, signaling, and differentiation. Our findings support disruption of epigenomic developmental programs, as proposed in other LMNA disease models. We recognized other factors influencing epigenetics and differentiation; thus, our approach needs improvement to further investigate this mechanism in an iPSC-derived model. Full article
(This article belongs to the Collection Lamins and Laminopathies)
Show Figures

Graphical abstract

20 pages, 5934 KiB  
Article
Axial Compressive Behavior of CFRP and MWCNT Incorporated GFRP Confined Concrete Cylinders after Exposure to Various Aggressive Environments
by Sruthi Sreekumar Kavitha, Mini K. Madhavan, Karingamanna Jayanarayanan and Prabir Kumar Sarker
J. Compos. Sci. 2024, 8(8), 313; https://doi.org/10.3390/jcs8080313 - 9 Aug 2024
Cited by 1 | Viewed by 1246
Abstract
Fiber-reinforced polymer confinement is considered to be effective in the retrofitting of concrete structures. The current study explores the effectiveness of one- and two-layer carbon fiber reinforced polymer (CFRP) and multiwalled carbon nanotube (MWCNT) incorporated three-layer glass fiber reinforced polymer (GFRP) confinement on [...] Read more.
Fiber-reinforced polymer confinement is considered to be effective in the retrofitting of concrete structures. The current study explores the effectiveness of one- and two-layer carbon fiber reinforced polymer (CFRP) and multiwalled carbon nanotube (MWCNT) incorporated three-layer glass fiber reinforced polymer (GFRP) confinement on concrete cylinders under aggressive exposures, such as acid, alkaline, marine, water, and elevated temperatures. At 1 wt.% MWCNT by weight of the epoxy matrix, mechanical characteristics of the laminate show a significant improvement. In the case of acid exposure, the axial load-carrying capacity of concrete specimens with single-layer CFRP confinement was equal to that of MWCNT incorporated three-layer GFRP confinement (GF3C1-AC). The axial strain of GF3C1-AC was 23% and 12% higher than one and two-layer CFRP confinement. After exposure at 400 °C, in comparison with one- and two-layer CFRP confinement, the axial strain of MWCNT incorporated three-layer GFRP confined specimens increased by 50% and 20%, respectively, which proved the efficacy of MWCNT as a heat-resistant nanofiller. The ultrasonic pulse velocity (UPV) test indicates that the confinement system protects the concrete core from sudden failure by impeding crack propagation. The test results proved that the MWCNT incorporated FRP system can be considered as a prospective substitute for CFRP systems for retrofitting applications in severe environmental conditions. Full article
Show Figures

Figure 1

15 pages, 1041 KiB  
Review
The Pathogenic Mechanisms of and Novel Therapies for Lamin A/C-Related Dilated Cardiomyopathy Based on Patient-Specific Pluripotent Stem Cell Platforms and Animal Models
by Xin-Yi Wu, Yee-Ki Lee, Yee-Man Lau, Ka-Wing Au, Yiu-Lam Tse, Kwong-Man Ng, Chun-Ka Wong and Hung-Fat Tse
Pharmaceuticals 2024, 17(8), 1030; https://doi.org/10.3390/ph17081030 - 5 Aug 2024
Cited by 1 | Viewed by 3607
Abstract
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM [...] Read more.
Variants (pathogenic) of the LMNA gene are a common cause of familial dilated cardiomyopathy (DCM), which is characterised by early-onset atrioventricular (AV) block, atrial fibrillation and ventricular tachyarrhythmias (VTs), and progressive heart failure. The unstable internal nuclear lamina observed in LMNA-related DCM is a consequence of the disassembly of lamins A and C. This suggests that LMNA variants produce truncated or alternative forms of protein that alter the nuclear structure and the signalling pathway related to cardiac muscle diseases. To date, the pathogenic mechanisms and phenotypes of LMNA-related DCM have been studied using different platforms, such as patient-specific induced pluripotent stem-cell-derived cardiomyocytes (iPSC-CMs) and transgenic mice. In this review, point variants in the LMNA gene that cause autosomal dominantly inherited forms of LMNA-related DCM are summarised. In addition, potential therapeutic targets based on preclinical studies of LMNA variants using transgenic mice and human iPSC-CMs are discussed. They include mitochondria deficiency, variants in nuclear deformation, chromatin remodelling, altered platelet-derived growth factor and ERK1/2-related pathways, and abnormal calcium handling. Full article
(This article belongs to the Special Issue Cell Therapy for Cardiac Disease)
Show Figures

Figure 1

15 pages, 838 KiB  
Article
Missense and Non-Missense Lamin A/C Gene Mutations Are Similarly Associated with Major Arrhythmic Cardiac Events: A 20-Year Single-Centre Experience
by Cinzia Forleo, Maria Cristina Carella, Paolo Basile, Eugenio Carulli, Michele Luca Dadamo, Francesca Amati, Francesco Loizzi, Sandro Sorrentino, Ilaria Dentamaro, Marco Maria Dicorato, Stefano Ricci, Rosanna Bagnulo, Matteo Iacoviello, Vincenzo Ezio Santobuono, Carlo Caiati, Martino Pepe, Jean-Francois Desaphy, Marco Matteo Ciccone, Nicoletta Resta and Andrea Igoren Guaricci
Biomedicines 2024, 12(6), 1293; https://doi.org/10.3390/biomedicines12061293 - 11 Jun 2024
Cited by 4 | Viewed by 2503
Abstract
Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes [...] Read more.
Arrhythmic risk stratification in patients with Lamin A/C gene (LMNA)-related cardiomyopathy influences clinical decisions. An implantable cardioverter defibrillator (ICD) should be considered in patients with an estimated 5-year risk of malignant ventricular arrhythmia (MVA) of ≥10%. The risk prediction score for MVA includes non-missense LMNA mutations, despite their role as an established risk factor for sudden cardiac death (SCD) has been questioned in several studies. The purpose of this study is to investigate cardiac features and find gene–phenotype correlations that would contribute to the evidence on the prognostic implications of non-missense vs. missense mutations in a cohort of LMNA mutant patients. An observational, prospective study was conducted in which 54 patients positive for a Lamin A/C mutation were enrolled, and 20 probands (37%) were included. The median age at first clinical manifestation was 41 (IQR 19) years. The median follow-up was 8 years (IQR 8). The type of LMNA gene mutation was distributed as follows: missense in 26 patients (48%), non-frameshift insertions in 16 (30%), frameshift deletions in 5 (9%), and nonsense in 7 (13%). Among the missense mutation carriers, two (8%) died and four (15%) were admitted onto the heart transplant list or underwent transplantation, with a major adverse cardiovascular event (MACE) rate of 35%. No statistically significant differences in MACE prevalence were identified according to the missense and non-missense mutation groups (p value = 0.847). Our data shift the spotlight on this considerable topic and could suggest that some missense mutations may deserve attention regarding SCD risk stratification in real-world clinical settings. Full article
Show Figures

Figure 1

17 pages, 26759 KiB  
Article
A Novel CRISPR-Cas9 Strategy to Target DYSTROPHIN Mutations Downstream of Exon 44 in Patient-Specific DMD iPSCs
by Neha R. Dhoke, Hyunkee Kim, Karim Azzag, Sarah B. Crist, James Kiley and Rita C. R. Perlingeiro
Cells 2024, 13(11), 972; https://doi.org/10.3390/cells13110972 - 4 Jun 2024
Cited by 9 | Viewed by 3768
Abstract
Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, [...] Read more.
Mutations in the DMD gene cause fatal Duchenne Muscular Dystrophy (DMD). An attractive therapeutic approach is autologous cell transplantation utilizing myogenic progenitors derived from induced pluripotent stem cells (iPSCs). Given that a significant number of DMD mutations occur between exons 45 and 55, we developed a gene knock-in approach to correct any mutations downstream of exon 44. We applied this approach to two DMD patient-specific iPSC lines carrying mutations in exons 45 and 51 and confirmed mini-DYSTROPHIN (mini-DYS) protein expression in corrected myotubes by western blot and immunofluorescence staining. Transplantation of gene-edited DMD iPSC-derived myogenic progenitors into NSG/mdx4Cv mice produced donor-derived myofibers, as shown by the dual expression of human DYSTROPHIN and LAMIN A/C. These findings further provide proof-of-concept for the use of programmable nucleases for the development of autologous iPSC-based therapy for muscular dystrophies. Full article
(This article belongs to the Special Issue Advances and Breakthroughs in Stem Cell Research)
Show Figures

Figure 1

22 pages, 5943 KiB  
Article
Trichostatin A Promotes Cytotoxicity of Cisplatin, as Evidenced by Enhanced Apoptosis/Cell Death Markers
by Yang Zhou, Qun Luo, Fangang Zeng, Xingkai Liu, Juanjuan Han, Liangzhen Gu, Xiao Tian, Yanyan Zhang, Yao Zhao and Fuyi Wang
Molecules 2024, 29(11), 2623; https://doi.org/10.3390/molecules29112623 - 3 Jun 2024
Cited by 3 | Viewed by 2103
Abstract
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in [...] Read more.
Trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, promotes the cytotoxicity of the genotoxic anticancer drug cisplatin, yet the underlying mechanism remains poorly understood. Herein, we revealed that TSA at a low concentration (1 μM) promoted the cisplatin-induced activation of caspase-3/6, which, in turn, increased the level of cleaved PARP1 and degraded lamin A&C, leading to more cisplatin-induced apoptosis and G2/M phase arrest of A549 cancer cells. Both ICP-MS and ToF-SIMS measurements demonstrated a significant increase in DNA-bound platinum in A549 cells in the presence of TSA, which was attributable to TSA-induced increase in the accessibility of genomic DNA to cisplatin attacking. The global quantitative proteomics results further showed that in the presence of TSA, cisplatin activated INF signaling to upregulate STAT1 and SAMHD1 to increase cisplatin sensitivity and downregulated ICAM1 and CD44 to reduce cell migration, synergistically promoting cisplatin cytotoxicity. Furthermore, in the presence of TSA, cisplatin downregulated TFAM and SLC3A2 to enhance cisplatin-induced ferroptosis, also contributing to the promotion of cisplatin cytotoxicity. Importantly, our posttranslational modification data indicated that acetylation at H4K8 played a dominant role in promoting cisplatin cytotoxicity. These findings provide novel insights into better understanding the principle of combining chemotherapy of genotoxic drugs and HDAC inhibitors for the treatment of cancers. Full article
(This article belongs to the Special Issue Chemical Biology in Asia)
Show Figures

Graphical abstract

Back to TopTop