Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = kite assisted propulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3687 KiB  
Article
Wind-Assisted Ship Propulsion of a Series 60 Ship Using a Static Kite Sail
by Wayne Formosa, Tonio Sant, Claire De Marco Muscat-Fenech and Massimo Figari
J. Mar. Sci. Eng. 2023, 11(1), 117; https://doi.org/10.3390/jmse11010117 - 5 Jan 2023
Cited by 9 | Viewed by 4320
Abstract
Following the International Maritime Organization’s goal to reduce greenhouse gas emissions, the interest in the application of wind-assisted ship propulsion (WASP) in maritime transportation is on the rise. Although a variety of WASP systems exist, the application in maritime shipping is still limited, [...] Read more.
Following the International Maritime Organization’s goal to reduce greenhouse gas emissions, the interest in the application of wind-assisted ship propulsion (WASP) in maritime transportation is on the rise. Although a variety of WASP systems exist, the application in maritime shipping is still limited, especially in the case of kite sails. This paper presents a numerical model to carry out a theoretical assessment of the influence of the kite planform area and wind speed on the aerodynamic performance of a kite sail providing propulsive assistance to a 75 m long ship having a Series 60 hull. A static kite sail is assumed, on which a tail wind generates a thrust force to pull the vessel via a tether. While the mass of the kite is neglected, that of the tether is accounted for. A model is implemented for the tensioned tether having a catenary profile. The results generally show a positive correlation between the aerodynamic forces and the kite parameters. As expected, the output parameter values corresponding to the optimal angle of attack for a range of vessel speeds are also found to increase with an increasing relative wind speed. It is concluded that a static 320 m2 kite sail would be sufficient to meet the entire propulsion requirements of the vessel under consideration under appropriate wind conditions. Full article
(This article belongs to the Topic Advances in Wind Energy Technology)
Show Figures

Figure 1

27 pages, 1565 KiB  
Article
Ship Towed by Kite: Investigation of the Dynamic Coupling
by Nedeleg Bigi, Kostia Roncin, Jean-Baptiste Leroux and Yves Parlier
J. Mar. Sci. Eng. 2020, 8(7), 486; https://doi.org/10.3390/jmse8070486 - 1 Jul 2020
Cited by 10 | Viewed by 3821
Abstract
This paper presents a series of dynamic simulations for a ship towed by kite. To ensure time efficient computations, seakeeping analysis with forward speed correction factors is carried out in the frequency domain and then transformed in the time domain by convolution. The [...] Read more.
This paper presents a series of dynamic simulations for a ship towed by kite. To ensure time efficient computations, seakeeping analysis with forward speed correction factors is carried out in the frequency domain and then transformed in the time domain by convolution. The seakeeping modeling is coupled with a zero-mass kite modeling assuming linear dependence of aerodynamic characteristics with respect to turning rate. Decoupled (segregated) and coupled (monolithic) approaches are assessed and compared in different environmental conditions. Results show that in regular beam waves, strong interactions between the kite and the ship motions are captured by the monolithic approach. Around the wave frequency, especially for the lower one tested (0.4 rad/s), a kite lock-in phenomenon is revealed. It is concluded that the mean kite towing force can be increased whereas the ship roll amplitude can even be decreased compared to a non-kite assisted ship propulsion configuration. Full article
(This article belongs to the Special Issue Ship Dynamics for Performance Based Design and Risk Averse Operations)
Show Figures

Figure 1

Back to TopTop