Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = k-mer-based phylogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 670 KiB  
Article
IDV Typer: An Automated Tool for Lineage Typing of Influenza D Viruses Based on Return Time Distribution
by Sanket Limaye, Anant Shelke, Mohan M. Kale, Urmila Kulkarni-Kale and Suresh V. Kuchipudi
Viruses 2024, 16(3), 373; https://doi.org/10.3390/v16030373 - 28 Feb 2024
Cited by 2 | Viewed by 2255
Abstract
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in [...] Read more.
Influenza D virus (IDV) is the most recent addition to the Orthomyxoviridae family and cattle serve as the primary reservoir. IDV has been implicated in Bovine Respiratory Disease Complex (BRDC), and there is serological evidence of human infection of IDV. Evolutionary changes in the IDV genome have resulted in the expansion of genetic diversity and the emergence of multiple lineages that might expand the host tropism and potentially increase the pathogenicity to animals and humans. Therefore, there is an urgent need for automated, accurate and rapid typing tools for IDV lineage typing. Currently, IDV lineage typing is carried out using BLAST-based searches and alignment-based molecular phylogeny of the hemagglutinin-esterase fusion (HEF) gene sequences, and lineage is assigned to query sequences based on sequence similarity (BLAST search) and proximity to the reference lineages in the tree topology, respectively. To minimize human intervention and lineage typing time, we developed IDV Typer server, implementing alignment-free method based on return time distribution (RTD) of k-mers. Lineages are assigned using HEF gene sequences. The server performs with 100% sensitivity and specificity. The IDV Typer server is the first application of an RTD-based alignment-free method for typing animal viruses. Full article
(This article belongs to the Special Issue Emerging Zoonotic Diseases 2024)
Show Figures

Figure 1

19 pages, 3416 KiB  
Article
Lacticaseibacillus paracasei: Occurrence in the Human Gut Microbiota and K-Mer-Based Assessment of Intraspecies Diversity
by Maria Frolova, Sergey Yudin, Valentin Makarov, Olga Glazunova, Olga Alikina, Natalia Markelova, Nikolay Kolzhetsov, Timur Dzhelyadin, Viktoria Shcherbakova, Vladimir Trubitsyn, Valery Panyukov, Alexandr Zaitsev, Sergey Kiselev, Konstantin Shavkunov and Olga Ozoline
Life 2021, 11(11), 1246; https://doi.org/10.3390/life11111246 - 17 Nov 2021
Cited by 5 | Viewed by 3521
Abstract
Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for [...] Read more.
Alignment-free approaches employing short k-mers as barcodes for individual genomes have created a new strategy for taxonomic analysis and paved a way for high-resolution phylogeny. Here, we introduce this strategy for the Lacticaseibacillus paracasei species as a taxon requiring barcoding support for precise systematics. Using this approach for phylotyping of L. paracasei VKM B-1144 at the genus level, we identified four L. paracasei phylogroups and found that L. casei 12A belongs to one of them, rather than to the L. casei clade. Therefore, we propose to change the specification of this strain. At the genus level we found only one relative of L. paracasei VKM B-1144 among 221 genomes, complete or available in contigs, and showed that the coding potential of the genome of this “rare” strain allows its consideration as a potential probiotic component. Four sets of published metagenomes were used to assess the dependence of L. paracasei presence in the human gut microbiome on chronic diseases, dietary changes and antibiotic treatment. Only antibiotics significantly affected their presence, and strain-specific barcoding allowed the identification of the main scenarios of the adaptive response. Thus, suggesting bacteria of this species for compensatory therapy, we also propose strain-specific barcoding for selecting optimal strains for target microbiomes. Full article
(This article belongs to the Special Issue Metagenomics: New Trends and Solutions)
Show Figures

Figure 1

20 pages, 25014 KiB  
Article
K-Mer Analyses Reveal Different Evolutionary Histories of Alpha, Beta, and Gamma Papillomaviruses
by Zigui Chen, Filippo Utro, Daniel Platt, Rob DeSalle, Laxmi Parida, Paul K. S. Chan and Robert D. Burk
Int. J. Mol. Sci. 2021, 22(17), 9657; https://doi.org/10.3390/ijms22179657 - 6 Sep 2021
Cited by 11 | Viewed by 4013
Abstract
Papillomaviruses (PVs) are a heterogeneous group of DNA viruses that can infect fish, birds, reptiles, and mammals. PVs infecting humans (HPVs) phylogenetically cluster into five genera (Alpha-, Beta-, Gamma-, Mu- and Nu-PV), with differences in tissue tropism and carcinogenicity. The evolutionary features associated [...] Read more.
Papillomaviruses (PVs) are a heterogeneous group of DNA viruses that can infect fish, birds, reptiles, and mammals. PVs infecting humans (HPVs) phylogenetically cluster into five genera (Alpha-, Beta-, Gamma-, Mu- and Nu-PV), with differences in tissue tropism and carcinogenicity. The evolutionary features associated with the divergence of Papillomaviridae are not well understood. Using a combination of k-mer distributions, genetic metrics, and phylogenetic algorithms, we sought to evaluate the characteristics and differences of Alpha-, Beta- and Gamma-PVs constituting the majority of HPV genomes. A total of 640 PVs including 442 HPV types, 27 non-human primate PV types, and 171 non-primate animal PV types were evaluated. Our analyses revealed the highest genetic diversity amongst Gamma-PVs compared to the Alpha and Beta PVs, suggesting reduced selective pressures on Gamma-PVs. Using a sequence alignment-free trimer (k = 3) phylogeny algorithm, we reconstructed a phylogeny that grouped most HPV types into a monophyletic clade that was further split into three branches similar to alignment-based classifications. Interestingly, a subset of low-risk Alpha HPVs (the species Alpha-2, 3, 4, and 14) split from other HPVs and were clustered with non-human primate PVs. Surprisingly, the trimer-constructed phylogeny grouped the Gamma-6 species types originally isolated from the cervicovaginal region with the main Alpha-HPV clade. These data indicate that characterization of papillomavirus heterogeneity via orthogonal approaches reveals novel insights into the biological understanding of HPV genomes. Full article
Show Figures

Figure 1

Back to TopTop