Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = k-essence dark energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 370 KiB  
Article
The Equation of State of Novel Double-Field Pure K-Essence for Inflation, Dark Matter and Dark Energy
by Changjun Gao
Universe 2024, 10(6), 235; https://doi.org/10.3390/universe10060235 - 24 May 2024
Cited by 2 | Viewed by 1130
Abstract
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, [...] Read more.
K-essence theories are usually studied in the framework of a single scalar field ϕ. Namely, the Lagrangian of K-essence is the function of the single scalar field ϕ and its covariant derivative. However, in this paper, we explore a double-field pure K-essence, i.e., the corresponding Lagrangian is the function of covariant derivatives of double scalar fields without a dependency on scalar fields themselves. This is why we call it double-field pure K-essence. The novelty of this K-essence is that its Lagrangian contains the quotient term of the kinetic energies from the two scalar fields. This results in the presence of many interesting features; for example, the equation of state can be arbitrarily small and arbitrarily large. In comparison, the range of the equation of state for quintessence is 1 to +1. Interestingly, this novel K-essence can play the role of an inflation field, dark matter, or dark energy by appropriately selecting the expressions of Lagrangian. Full article
Show Figures

Figure 1

16 pages, 569 KiB  
Article
Scalar Field Models of Barrow Holographic Dark Energy in f(R,T) Gravity
by Umesh Kumar Sharma, Mukesh Kumar and Gunjan Varshney
Universe 2022, 8(12), 642; https://doi.org/10.3390/universe8120642 - 2 Dec 2022
Cited by 15 | Viewed by 2065
Abstract
This research study investigates Barrow holographic dark energy with an energy density of ρΛ=CH2Δ by considering the Hubble horizon as the IR cut-off in the f(R,T) gravity framework. We employ Barrow [...] Read more.
This research study investigates Barrow holographic dark energy with an energy density of ρΛ=CH2Δ by considering the Hubble horizon as the IR cut-off in the f(R,T) gravity framework. We employ Barrow holographic dark energy to obtain the equation of the state for the Barrow holographic energy density in a flat FLRW Universe. Concretely, we study the correspondence between quintessence, k-essence, and dilation scalar field models with the Barrow holographic dark energy in a flat f(R,T) Universe. Furthermore, we reconstruct the dynamics and potential for all these models for different values of the Barrow parameter: Δ. Via this study, we can show that for Barrow holographic quintessence, k-essence, and dilation scalar field models, if the corresponding model parameters satisfy some limitations, the accelerated expansion can be achieved. Full article
Show Figures

Figure 1

21 pages, 2007 KiB  
Article
The Phase Space Analysis of Interacting K-Essence Dark Energy Models in Loop Quantum Cosmology
by Bohai Chen, Yabo Wu, Jianan Chi, Wenzhong Liu and Yiliang Hu
Universe 2022, 8(10), 520; https://doi.org/10.3390/universe8100520 - 6 Oct 2022
Cited by 5 | Viewed by 3304
Abstract
The present work deals with two kinds of k-essence dark energy models within the framework of loop quantum cosmology (LQC). The two kinds of k-essence models originates from two forms of Lagrangians, i.e., [...] Read more.
The present work deals with two kinds of k-essence dark energy models within the framework of loop quantum cosmology (LQC). The two kinds of k-essence models originates from two forms of Lagrangians, i.e., L1=F(X)V(ϕ) and L2=F(X)V(ϕ), where F(X) and V(ϕ) stand for the kinetic term and potential of the scalar field ϕ, respectively. Two models are based on different phase variables settings, and the general form of autonomous dynamical system is deduced for each Lagrangian. Then, the dynamical stabilities of the critical points in each model are analysed in different forms of F(X) and V(ϕ). Model I is a 3-dim system with four stable points, and Model II is a 4-dim system but reduced to a 3-dim system using the symmetry analysis, which has five stable points. Moreover, the corresponding cosmological quantities, such as Ωϕ, wϕ and q, are calculated at each critical point. To compare these with the case of the classical Einstein cosmology (EC), the dynamical evolutionary trajectories in the phase space and evolutionary curves of the cosmological quantities are drawn for both EC and LQC cases, which shows that the loop quantum gravity effects diminish in the late-time universe but are significant in the early time. Further, the effects of interaction Q=αHρm on the evolutions of the universe are discussed. With the loop quantum gravity effects, bouncing universe is achieved in both models for different initial values of ϕ0, ϕ˙0, H0, ρ0 and coupling parameter α, which helps to avoid singularities. However, the interaction has little effect on bounce, although it is important to the stability of some critical points. Full article
(This article belongs to the Special Issue Recent Advances in Quantum Cosmology)
Show Figures

Figure 1

96 pages, 971 KiB  
Article
K-Essence Lagrangians of Polytropic and Logotropic Unified Dark Matter and Dark Energy Models
by Pierre-Henri Chavanis
Astronomy 2022, 1(3), 126-221; https://doi.org/10.3390/astronomy1030011 - 28 Sep 2022
Cited by 10 | Viewed by 3217
Abstract
We determine the k-essence Lagrangian of a relativistic barotropic fluid. The equation of state of the fluid can be specified in different manners depending on whether the pressure is expressed in terms of the energy density (model I), the rest-mass density (model II), [...] Read more.
We determine the k-essence Lagrangian of a relativistic barotropic fluid. The equation of state of the fluid can be specified in different manners depending on whether the pressure is expressed in terms of the energy density (model I), the rest-mass density (model II), or the pseudo rest-mass density for a complex scalar field in the Thomas-Fermi approximation (model III). In the nonrelativistic limit, these three formulations coincide. In the relativistic regime, they lead to different models that we study exhaustively. We provide general results valid for an arbitrary equation of state and show how the different models are connected to each other. For illustration, we specifically consider polytropic and logotropic dark fluids that have been proposed as unified dark matter and dark energy models. We recover the Born-Infeld action of the Chaplygin gas in models I and III and obtain the explicit expression of the reduced action of the logotropic dark fluid in models II and III. We also derive the two-fluid representation of the Chaplygin and logotropic models. Our general formalism can be applied to many other situations such as Bose-Einstein condensates with a |φ|4 (or more general) self-interaction, dark matter superfluids, and mixed models. Full article
16 pages, 1176 KiB  
Article
Dynamical Stability and Geometrical Diagnostic of the Power Law K-Essence Dark Energy Model with Interaction
by Bo-Hai Chen, Ya-Bo Wu, Dong-Fang Xu, Wei Dong and Nan Zhang
Universe 2020, 6(12), 244; https://doi.org/10.3390/universe6120244 - 18 Dec 2020
Cited by 4 | Viewed by 2300
Abstract
We investigate the cosmological evolution of the power law k-essence dark energy (DE) model with interaction in FRWL spacetime with the Lagrangian that contains a kinetic function F(X)=X+X. Concretely, the cosmological evolution in this [...] Read more.
We investigate the cosmological evolution of the power law k-essence dark energy (DE) model with interaction in FRWL spacetime with the Lagrangian that contains a kinetic function F(X)=X+X. Concretely, the cosmological evolution in this model are discussed by the autonomous dynamical system and its critical points, together with the corresponding cosmological quantities, such as Ωϕ, wϕ, cs2, and q, are calculated at each critical point. The evolutionary trajectories are drawn in order to show the dynamical process on the phases plan around the critical points. The result that we obtained indicates that there are four dynamical attractors, and all of them correspond to an accelerating expansion of universe for certain potential parameter and coupling parameter. Besides that, the geometrical diagnostic by the statefinder hierarchy S3(1) and S4(1) of this scalar field model are numerically obtained by the phase components, as an extended null diagnostic for the cosmological constant. This diagnostic shows that both the potential parameter λ and interaction parameter α play important roles in the evolution of the statefinder hierarchy. Full article
(This article belongs to the Special Issue Probing the Dark Universe with Theory and Observations)
Show Figures

Figure 1

25 pages, 353 KiB  
Article
Cosmology of F(T) Gravity and k-Essence
by Ratbay Myrzakulov
Entropy 2012, 14(9), 1627-1651; https://doi.org/10.3390/e14091627 - 4 Sep 2012
Cited by 42 | Viewed by 6495
Abstract
This a brief review on F(T) gravity and its relation with k-essence. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. We perform a thorough reconstruction analysis on the so-called [...] Read more.
This a brief review on F(T) gravity and its relation with k-essence. Modified teleparallel gravity theory with the torsion scalar has recently gained a lot of attention as a possible explanation of dark energy. We perform a thorough reconstruction analysis on the so-called F(T) models, where F(T) is some general function of the torsion term, and deduce the required conditions for the equivalence between of F(T) models with pure kinetic k-essence models. We present a new class of models of F(T)-gravity and k-essence. Full article
(This article belongs to the Special Issue Modified Gravity: From Black Holes Entropy to Current Cosmology)
Back to TopTop