Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = islet of Langerhans transplantation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2519 KiB  
Article
A Tissue-Engineered Construct Based on a Decellularized Scaffold and the Islets of Langerhans: A Streptozotocin-Induced Diabetic Model
by Victor I. Sevastianov, Anna S. Ponomareva, Natalia V. Baranova, Aleksandra D. Belova, Lyudmila A. Kirsanova, Alla O. Nikolskaya, Eugenia G. Kuznetsova, Elizaveta O. Chuykova, Nikolay N. Skaletskiy, Galina N. Skaletskaya, Evgeniy A. Nemets, Yulia B. Basok and Sergey V. Gautier
Life 2024, 14(11), 1505; https://doi.org/10.3390/life14111505 - 19 Nov 2024
Cited by 2 | Viewed by 1426
Abstract
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work [...] Read more.
Producing a tissue-engineered pancreas based on a tissue-specific scaffold from a decellularized pancreas, imitating the natural pancreatic tissue microenvironment and the islets of Langerhans, is one of the approaches to treating patients with type 1 diabetes mellitus (T1DM). The aim of this work was to investigate the ability of a fine-dispersed tissue-specific scaffold (DP scaffold) from decellularized human pancreas fragments to support the islets’ survival and insulin-producing function when injected in a streptozotocin-induced diabetic rat model. The developed decellularization protocol allows us to obtain a scaffold with a low DNA content (33 [26; 38] ng/mg of tissue, p < 0.05) and with the preservation of GAGs (0.92 [0.84; 1.16] µg/mg, p < 0.05) and fibrillar collagen (273.7 [241.2; 303.0] µg/mg, p < 0.05). Rat islets of Langerhans were seeded in the obtained scaffolds. The rats with stable T1DM were treated by intraperitoneal injections of rat islets alone and islets seeded on the DP scaffold. The blood glucose level was determined for 10 weeks with a histological examination of experimental animals’ pancreas. A more pronounced decrease in the recipient rats’ glycemia was detected after comparing the islets seeded on the DP scaffold with the control injection (by 71.4% and 51.2%, respectively). It has been shown that the DP scaffold facilitates a longer survival and the efficient function of pancreatic islets in vivo and can be used to engineer a pancreas. Full article
(This article belongs to the Section Cell Biology and Tissue Engineering)
Show Figures

Graphical abstract

66 pages, 3620 KiB  
Review
A Supportive Role of Mesenchymal Stem Cells on Insulin-Producing Langerhans Islets with a Specific Emphasis on The Secretome
by Ronit Vogt Sionov and Ronit Ahdut-HaCohen
Biomedicines 2023, 11(9), 2558; https://doi.org/10.3390/biomedicines11092558 - 18 Sep 2023
Cited by 3 | Viewed by 2764
Abstract
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to [...] Read more.
Type 1 Diabetes (T1D) is a chronic autoimmune disease characterized by a gradual destruction of insulin-producing β-cells in the endocrine pancreas due to innate and specific immune responses, leading to impaired glucose homeostasis. T1D patients usually require regular insulin injections after meals to maintain normal serum glucose levels. In severe cases, pancreas or Langerhans islet transplantation can assist in reaching a sufficient β-mass to normalize glucose homeostasis. The latter procedure is limited because of low donor availability, high islet loss, and immune rejection. There is still a need to develop new technologies to improve islet survival and implantation and to keep the islets functional. Mesenchymal stem cells (MSCs) are multipotent non-hematopoietic progenitor cells with high plasticity that can support human pancreatic islet function both in vitro and in vivo and islet co-transplantation with MSCs is more effective than islet transplantation alone in attenuating diabetes progression. The beneficial effect of MSCs on islet function is due to a combined effect on angiogenesis, suppression of immune responses, and secretion of growth factors essential for islet survival and function. In this review, various aspects of MSCs related to islet function and diabetes are described. Full article
(This article belongs to the Special Issue Mechanisms and Therapeutic Potential of Mesenchymal Stem Cells (MSCs))
Show Figures

Figure 1

30 pages, 2983 KiB  
Review
Type 1 Diabetes Mellitus: A Review on Advances and Challenges in Creating Insulin Producing Devices
by Sonia M. Rodrigues Oliveira, António Rebocho, Ehsan Ahmadpour, Veeranoot Nissapatorn and Maria de Lourdes Pereira
Micromachines 2023, 14(1), 151; https://doi.org/10.3390/mi14010151 - 6 Jan 2023
Cited by 42 | Viewed by 12080
Abstract
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the [...] Read more.
Type 1 diabetes mellitus (T1DM) is the most common autoimmune chronic disease in young patients. It is caused by the destruction of pancreatic endocrine β-cells that produce insulin in specific areas of the pancreas, known as islets of Langerhans. As a result, the body becomes insulin deficient and hyperglycemic. Complications associated with diabetes are life-threatening and the current standard of care for T1DM consists still of insulin injections. Lifesaving, exogenous insulin replacement is a chronic and costly burden of care for diabetic patients. Alternative therapeutic options have been the focus in these fields. Advances in molecular biology technologies and in microfabrication have enabled promising new therapeutic options. For example, islet transplantation has emerged as an effective treatment to restore the normal regulation of blood glucose in patients with T1DM. However, this technique has been hampered by obstacles, such as limited islet availability, extensive islet apoptosis, and poor islet vascular engraftment. Many of these unsolved issues need to be addressed before a potential cure for T1DM can be a possibility. New technologies like organ-on-a-chip platforms (OoC), multiplexed assessment tools and emergent stem cell approaches promise to enhance therapeutic outcomes. This review will introduce the disorder of type 1 diabetes mellitus, an overview of advances and challenges in the areas of microfluidic devices, monitoring tools, and prominent use of stem cells, and how they can be linked together to create a viable model for the T1DM treatment. Microfluidic devices like OoC platforms can establish a crucial platform for pathophysiological and pharmacological studies as they recreate the pancreatic environment. Stem cell use opens the possibility to hypothetically generate a limitless number of functional pancreatic cells. Additionally, the integration of stem cells into OoC models may allow personalized or patient-specific therapies. Full article
(This article belongs to the Section B:Biology and Biomedicine)
Show Figures

Figure 1

15 pages, 3525 KiB  
Review
Interventional Radiological Management and Prevention of Complications after Pancreatic Surgery: Drainage, Embolization and Islet Auto-Transplantation
by Cristina Mosconi, Maria Adriana Cocozza, Filippo Piacentino, Federico Fontana, Alberta Cappelli, Francesco Modestino, Andrea Coppola, Diego Palumbo, Paolo Marra, Paola Maffi, Lorenzo Piemonti, Antonio Secchi, Claudio Ricci, Riccardo Casadei, Gianpaolo Balzano, Massimo Falconi, Giulio Carcano, Antonio Basile, Anna Maria Ierardi, Gianpaolo Carrafiello, Francesco De Cobelli, Rita Golfieri and Massimo Venturiniadd Show full author list remove Hide full author list
J. Clin. Med. 2022, 11(20), 6005; https://doi.org/10.3390/jcm11206005 - 12 Oct 2022
Cited by 7 | Viewed by 3135
Abstract
Pancreatic surgery still remains burdened by high levels of morbidity and mortality with a relevant incidence of complications, even in high volume centers. This review highlights the interventional radiological management of complications after pancreatic surgery. The current literature regarding the percutaneous drainage of [...] Read more.
Pancreatic surgery still remains burdened by high levels of morbidity and mortality with a relevant incidence of complications, even in high volume centers. This review highlights the interventional radiological management of complications after pancreatic surgery. The current literature regarding the percutaneous drainage of fluid collections due to pancreatic fistulas, percutaneous transhepatic biliary drainage due to biliary leaks and transcatheter embolization (or stent–graft) due to arterial bleeding is analyzed. Moreover, also, percutaneous intra-portal islet auto-transplantation for the prevention of pancreatogenic diabetes in case of extended pancreatic resection is also examined. Moreover, a topic not usually treated in other similar reviewsas percutaneous intra-portal islet auto-transplantation for the prevention of pancreatogenic diabetes in case of extended pancreatic resection is also one of our areas of focus. In islet auto-transplantation, the patient is simultaneously donor and recipient. Differently from islet allo-transplantation, it does not require immunosuppression, has no risk of rejection and is usually efficient with a small number of transplanted islets. Full article
(This article belongs to the Special Issue Embolization Techniques: State of the Art and Future Perspectives)
Show Figures

Figure 1

27 pages, 2151 KiB  
Review
Extracellular Vesicles in Type 1 Diabetes: A Versatile Tool
by Caitlin N. Suire and Mangesh D. Hade
Bioengineering 2022, 9(3), 105; https://doi.org/10.3390/bioengineering9030105 - 4 Mar 2022
Cited by 23 | Viewed by 6148
Abstract
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels [...] Read more.
Type 1 diabetes is a chronic autoimmune disease affecting nearly 35 million people. This disease develops as T-cells continually attack the β-cells of the islets of Langerhans in the pancreas, which leads to β-cell death, and steadily decreasing secretion of insulin. Lowered levels of insulin minimize the uptake of glucose into cells, thus putting the body in a hyperglycemic state. Despite significant progress in the understanding of the pathophysiology of this disease, there is a need for novel developments in the diagnostics and management of type 1 diabetes. Extracellular vesicles (EVs) are lipid-bound nanoparticles that contain diverse content from their cell of origin and can be used as a biomarker for both the onset of diabetes and transplantation rejection. Furthermore, vesicles can be loaded with therapeutic cargo and delivered in conjunction with a transplant to increase cell survival and long-term outcomes. Crucially, several studies have linked EVs and their cargos to the progression of type 1 diabetes. As a result, gaining a better understanding of EVs would help researchers better comprehend the utility of EVs in regulating and understanding type 1 diabetes. EVs are a composition of biologically active components such as nucleic acids, proteins, metabolites, and lipids that can be transported to particular cells/tissues through the blood system. Through their varied content, EVs can serve as a flexible aid in the diagnosis and management of type 1 diabetes. In this review, we provide an overview of existing knowledge about EVs. We also cover the role of EVs in the pathogenesis, detection, and treatment of type 1 diabetes and the function of EVs in pancreas and islet β-cell transplantation. Full article
(This article belongs to the Special Issue Extracellular Vesicles: Applications in Regenerative Medicine)
Show Figures

Figure 1

18 pages, 11455 KiB  
Article
3D Collagen Hydrogel Promotes In Vitro Langerhans Islets Vascularization through ad-MVFs Angiogenic Activity
by Monica Salamone, Salvatrice Rigogliuso, Aldo Nicosia, Simona Campora, Carmelo Marco Bruno and Giulio Ghersi
Biomedicines 2021, 9(7), 739; https://doi.org/10.3390/biomedicines9070739 - 27 Jun 2021
Cited by 20 | Viewed by 4418
Abstract
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle [...] Read more.
Adipose derived microvascular fragments (ad-MVFs) consist of effective vascularization units able to reassemble into efficient microvascular networks. Because of their content in stem cells and related angiogenic activity, ad-MVFs represent an interesting tool for applications in regenerative medicine. Here we show that gentle dissociation of rat adipose tissue provides a mixture of ad-MVFs with a length distribution ranging from 33–955 μm that are able to maintain their original morphology. The isolated units of ad-MVFs that resulted were able to activate transcriptional switching toward angiogenesis, forming tubes, branches, and entire capillary networks when cultured in 3D collagen type-I hydrogel. The proper involvement of metalloproteases (MMP2/MMP9) and serine proteases in basal lamina and extracellular matrix ECM degradation during the angiogenesis were concurrently assessed by the evaluation of alpha-smooth muscle actin (αSMA) expression. These results suggest that collagen type-I hydrogel provides an adequate 3D environment supporting the activation of the vascularization process. As a proof of concept, we exploited 3D collagen hydrogel for the setting of ad-MVF–islet of Langerhans coculture to improve the islets vascularization. Our results suggest potential employment of the proposed in vitro system for regenerative medicine applications, such as the improving of the islet of Langerhans engraftment before transplantation. Full article
(This article belongs to the Special Issue Hydrogels for Biomedical Application)
Show Figures

Figure 1

15 pages, 9840 KiB  
Article
Ectopic Leptin Production by Intraocular Pancreatic Islet Organoids Ameliorates the Metabolic Phenotype of ob/ob Mice
by Barbara Leibiger, Tilo Moede, Ismael Valladolid-Acebes, Meike Paschen, Montse Visa, Ingo B. Leibiger and Per-Olof Berggren
Metabolites 2021, 11(6), 387; https://doi.org/10.3390/metabo11060387 - 14 Jun 2021
Cited by 3 | Viewed by 3664
Abstract
The pancreatic islets of Langerhans consist of endocrine cells that secrete peptide hormones into the blood circulation in response to metabolic stimuli. When transplanted into the anterior chamber of the eye (ACE), pancreatic islets engraft and maintain morphological features of native islets as [...] Read more.
The pancreatic islets of Langerhans consist of endocrine cells that secrete peptide hormones into the blood circulation in response to metabolic stimuli. When transplanted into the anterior chamber of the eye (ACE), pancreatic islets engraft and maintain morphological features of native islets as well as islet-specific vascularization and innervation patterns. In sufficient amounts, intraocular islets are able to maintain glucose homeostasis in diabetic mice. Islet organoids (pseudo-islets), which are formed by self-reassembly of islet cells following disaggregation and genetic manipulation, behave similarly to native islets. Here, we tested the hypothesis that genetically engineered intraocular islet organoids can serve as production sites for leptin. To test this hypothesis, we chose the leptin-deficient ob/ob mouse as a model system, which becomes severely obese, hyperinsulinemic, hyperglycemic, and insulin resistant. We generated a Tet-OFF-based beta-cell-specific adenoviral expression construct for mouse leptin, which allowed efficient transduction of native beta-cells, optical monitoring of leptin expression by co-expressed fluorescent proteins, and the possibility to switch-off leptin expression by treatment with doxycycline. Intraocular transplantation of islet organoids formed from transduced islet cells, which lack functional leptin receptors, to ob/ob mice allowed optical monitoring of leptin expression and ameliorated their metabolic phenotype by improving bodyweight, glucose tolerance, serum insulin, and C-peptide levels. Full article
(This article belongs to the Special Issue Islet Biology and Metabolism)
Show Figures

Graphical abstract

18 pages, 4693 KiB  
Article
Valproic Acid Suppresses Autoimmune Recurrence and Allograft Rejection in Islet Transplantation through Induction of the Differentiation of Regulatory T Cells and Can Be Used in Cell Therapy for Type 1 Diabetes
by Jeng-Rong Lin, Shing-Hwa Huang, Chih-Hsiung Wu, Yuan-Wu Chen, Zhi-Jie Hong, Chia-Pi Cheng, Huey-Kang Sytwu and Gu-Jiun Lin
Pharmaceuticals 2021, 14(5), 475; https://doi.org/10.3390/ph14050475 - 17 May 2021
Cited by 7 | Viewed by 5508
Abstract
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T [...] Read more.
Type 1 diabetes mellitus (T1D) results from the destruction of insulin-producing β cells in the islet of the pancreas by lymphocytes. Non-obese diabetic (NOD) mouse is an animal model frequently used for this disease. It has been considered that T1D is a T cell-mediated autoimmune disease. Both CD4+ and CD8+ T cells are highly responsible for the destruction of β cells within the pancreatic islets of Langerhans. Previous studies have revealed that regulatory T (Treg) cells play a critical role in the homeostasis of the immune system as well as immune tolerance to autoantigens, thereby preventing autoimmunity. Valproic acid (VPA), a branched short-chain fatty acid, is widely used as an antiepileptic drug and a mood stabilizer. Previous reports have demonstrated that VPA treatment decreases the incidence and severity of collagen-induced arthritis and experimental autoimmune neuritis by increasing the population of Treg cells in these mouse disease models. Given the effect of VPA in the induction of Treg cells’ population, we evaluated the therapeutic potential and the protective mechanism of VPA treatment in the suppression of graft autoimmune rejection and immune recurrence in syngeneic or allogenic islet transplantation mouse models. In our study, we found that the treatment of VPA increased the expression of forkhead box P3 (FOXP3), which is a critical transcription factor that controls Treg cells’ development and function. Our data revealed that 400 mg/kg VPA treatment in recipients effectively prolonged the survival of syngeneic and allogenic islet grafts. The percentage of Treg cells in splenocytes increased in VPA-treated recipients. We also proved that adoptive transfer of VPA-induced Tregs to the transplanted recipients effectively prolonged the survival of islet grafts. The results of this study provide evidence of the therapeutic potential and the underlying mechanism of VPA treatment in syngeneic islet transplantation for T1D. It also provides experimental evidence for cell therapy by adoptive transferring of in vitro VPA-induced Tregs for the suppression of autoimmune recurrence. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

24 pages, 2206 KiB  
Review
Towards a Functional Cure for Diabetes Using Stem Cell-Derived Beta Cells: Are We There Yet?
by Stephanie Bourgeois, Toshiaki Sawatani, Annelore Van Mulders, Nico De Leu, Yves Heremans, Harry Heimberg, Miriam Cnop and Willem Staels
Cells 2021, 10(1), 191; https://doi.org/10.3390/cells10010191 - 19 Jan 2021
Cited by 52 | Viewed by 11983
Abstract
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation [...] Read more.
Diabetes mellitus is a pandemic metabolic disorder that results from either the autoimmune destruction or the dysfunction of insulin-producing pancreatic beta cells. A promising cure is beta cell replacement through the transplantation of islets of Langerhans. However, donor shortage hinders the widespread implementation of this therapy. Human pluripotent stem cells, including embryonic stem cells and induced pluripotent stem cells, represent an attractive alternative beta cell source for transplantation. Although major advances over the past two decades have led to the generation of stem cell-derived beta-like cells that share many features with genuine beta cells, producing fully mature beta cells remains challenging. Here, we review the current status of beta cell differentiation protocols and highlight specific challenges that are associated with producing mature beta cells. We address the challenges and opportunities that are offered by monogenic forms of diabetes. Finally, we discuss the remaining hurdles for clinical application of stem cell-derived beta cells and the status of ongoing clinical trials. Full article
(This article belongs to the Special Issue Pluripotent Stem Cells for Regenerative Medicine)
Show Figures

Figure 1

Back to TopTop