Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = intraparietal sulcus region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2116 KiB  
Article
Right Parietal rTMS Induces Bidirectional Effects of Selective Attention upon Object Integration
by Markus Conci, Leonie Nowack, Paul C. J. Taylor, Kathrin Finke and Hermann J. Müller
Brain Sci. 2025, 15(5), 483; https://doi.org/10.3390/brainsci15050483 - 3 May 2025
Viewed by 636
Abstract
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link [...] Read more.
Background/Objectives: Part-to-whole object completion and search guidance by salient, integrated objects has been proposed to require attentional resources, as shown by studies of neglect patients suffering from right-parietal brain damage. The current study was performed to provide further causal evidence for the link between attention and object integration. Methods: Healthy observers detected targets in the left and/or right hemifields, and these targets were in turn embedded in various Kanizsa-type configurations that systematically varied in the extent to which individual items could be integrated into a complete, whole object. Moreover, repetitive transcranial magnetic stimulation (rTMS) was applied over the right intraparietal sulcus (IPS) and compared to both active and passive baseline conditions. Results: The results showed that target detection was substantially facilitated when the to-be detected item(s) were fully embedded in a salient, grouped Kanizsa figure, either a unilateral triangle or a bilateral diamond. However, object groupings in one hemifield did not facilitate target detection to the same extent when there were bilateral targets, one inside the (triangle) grouping and the other outside of the grouped object. These results extend previous findings from neglect patients. Moreover, a subgroup of observers was found to be particularly sensitive to IPS stimulation, revealing neglect-like extinction behavior with the single-hemifield triangle groupings and bilateral targets. Conversely, a second subgroup showed the opposite effect, namely an overall, IPS-dependent improvement in performance. Conclusions: These explorative analyses show that the parietal cortex, in particular IPS, seems to modulate the processing of object groupings by up- and downregulating the deployment of attention to spatial regions were to-be-grouped items necessitate attentional resources for object completion. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

14 pages, 3714 KiB  
Case Report
Visual Cortical Function Changes After Perceptual Learning with Dichoptic Attention Tasks in Adults with Amblyopia: A Case Study Evaluated Using fMRI
by Chuan Hou, Zhangziyi Zhou, Ismet Joan Uner and Spero C. Nicholas
Brain Sci. 2024, 14(11), 1148; https://doi.org/10.3390/brainsci14111148 - 16 Nov 2024
Viewed by 1590
Abstract
Background: Amblyopia is a neurodevelopmental disorder of vision, commonly caused by strabismus or anisometropia during early childhood. While studies demonstrated that perceptual learning improves visual acuity and stereopsis in adults with amblyopia, accompanying changes in visual cortical function remain unclear. Methods: We measured [...] Read more.
Background: Amblyopia is a neurodevelopmental disorder of vision, commonly caused by strabismus or anisometropia during early childhood. While studies demonstrated that perceptual learning improves visual acuity and stereopsis in adults with amblyopia, accompanying changes in visual cortical function remain unclear. Methods: We measured functional magnetic resonance imaging (fMRI) responses before and after perceptual learning in seven adults with amblyopia. Our learning tasks involved dichoptic high-attention-demand tasks that avoided V1 function-related tasks and required high-level cortical functions (e.g., intraparietal sulcus) to train the amblyopic eye. Results: Perceptual learning induced low-level visual cortical function changes, which were strongly associated with the etiology of amblyopia and visual function improvements. Anisometropic amblyopes showed functional improvements across all regions of interest (ROIs: V1, V2, V3, V3A, and hV4), along with improvements in visual acuity and stereoacuity. In contrast, strabismic amblyopes showed robust improvements in visual cortical functions only in individuals who experienced significant gains in visual acuity and stereoacuity. Notably, improvements in V1 functions were significantly correlated with the magnitude of visual acuity and stereoacuity improvements when combining both anisometropic and strabismic amblyopes. Conclusions: Our findings provide evidence that learning occurs in both high-level and low-level cortical processes. Our study suggests that early intervention to correct eye alignment (e.g., strabismus surgery) is critical for restoring both visual and cortical functions in strabismic amblyopia. Full article
(This article belongs to the Special Issue The Intersection of Perceptual Learning and Motion/Form Perception)
Show Figures

Figure 1

22 pages, 853 KiB  
Review
Individual Differences in Bodily Self-Consciousness and Its Neural Basis
by Haiyan Wu, Ying Huang, Pengmin Qin and Hang Wu
Brain Sci. 2024, 14(8), 795; https://doi.org/10.3390/brainsci14080795 - 8 Aug 2024
Cited by 2 | Viewed by 2654
Abstract
Bodily self-consciousness (BSC), a subject of interdisciplinary interest, refers to the awareness of one’s bodily states. Previous studies have noted the existence of individual differences in BSC, while neglecting the underlying factors and neural basis of such individual differences. Considering that BSC relied [...] Read more.
Bodily self-consciousness (BSC), a subject of interdisciplinary interest, refers to the awareness of one’s bodily states. Previous studies have noted the existence of individual differences in BSC, while neglecting the underlying factors and neural basis of such individual differences. Considering that BSC relied on integration from both internal and external self-relevant information, we here review previous findings on individual differences in BSC through a three-level-self model, which includes interoceptive, exteroceptive, and mental self-processing. The data show that cross-level factors influenced individual differences in BSC, involving internal bodily signal perceptibility, multisensory processing principles, personal traits shaped by environment, and interaction modes that integrate multiple levels of self-processing. Furthermore, in interoceptive processing, regions like the anterior cingulate cortex and insula show correlations with different perceptions of internal sensations. For exteroception, the parietal lobe integrates sensory inputs, coordinating various BSC responses. Mental self-processing modulates differences in BSC through areas like the medial prefrontal cortex. For interactions between multiple levels of self-processing, regions like the intraparietal sulcus involve individual differences in BSC. We propose that diverse experiences of BSC can be attributed to different levels of self-processing, which moderates one’s perception of their body. Overall, considering individual differences in BSC is worth amalgamating diverse methodologies for the diagnosis and treatment of some diseases. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

12 pages, 1337 KiB  
Article
Conflict Experience Regulates the Neural Encoding of Cognitive Conflict
by Hui Jiang, Chaozheng Huang, Zekai Li, Qiuyun Wang, Weisong Liang and Aibao Zhou
Brain Sci. 2023, 13(6), 880; https://doi.org/10.3390/brainsci13060880 - 30 May 2023
Cited by 2 | Viewed by 2142
Abstract
Cognitive control is adaptive in that it rapidly adjusts attention in response to changing contexts and shifting goals. Research provides evidence that cognitive control can rapidly adjust attention to focus on task-relevant information based on prior conflict experience. Neural encoding of goal-related information [...] Read more.
Cognitive control is adaptive in that it rapidly adjusts attention in response to changing contexts and shifting goals. Research provides evidence that cognitive control can rapidly adjust attention to focus on task-relevant information based on prior conflict experience. Neural encoding of goal-related information is critical for goal-directed behaviour; however, the empirical evidence on how conflict experience affects the encoding of cognitive conflict in the brain is rather weak. In the present fMRI study, a Stroop task with different proportions of incongruent trial was used to investigate the neural encoding of cognitive conflict in the environment with changing conflict experience. The results showed that the anterior cingulate cortex, dorsolateral prefrontal cortex, and intraparietal sulcus played a pivotal role in the neural encoding of cognitive conflict. The classification in anterior cingulate cortex was significantly above chance in the high-proportion, moderate-proportion, and low-proportion conflict conditions conducted separately, suggesting that neural encoding of cognitive conflict in this region was not altered based on proportion of conflict. The dorsolateral prefrontal cortex and intraparietal sulcus showed significant above-chance classification in the moderate-proportion and low-proportion conflict conditions, but not in the high-proportion conflict condition. These findings provide direct evidence that conflict experience modulates the neural encoding of cognitive conflict. Full article
(This article belongs to the Section Behavioral Neuroscience)
Show Figures

Figure 1

14 pages, 2165 KiB  
Article
Brain Correlates of Chinese Handwriting and Their Relation to Reading Development in Children: An fMRI Study
by Jun Zhang, Liying Kang, Junjun Li, Yizhen Li, Hongyan Bi and Yang Yang
Brain Sci. 2022, 12(12), 1724; https://doi.org/10.3390/brainsci12121724 - 16 Dec 2022
Cited by 6 | Viewed by 4275
Abstract
Handwriting plays an important role in written communication, reading, and academic success. However, little is known about the neural correlates of handwriting in children. Using functional magnetic resonance imaging (fMRI) and a copying task, we investigated regional brain activation and functional lateralization associated [...] Read more.
Handwriting plays an important role in written communication, reading, and academic success. However, little is known about the neural correlates of handwriting in children. Using functional magnetic resonance imaging (fMRI) and a copying task, we investigated regional brain activation and functional lateralization associated with Chinese handwriting in children (N = 36, 9–11 years old), as well as their relations to reading skills. We found significant activation of the bilateral frontal motor cortices, somatosensory cortex, intraparietal sulcus (IPS), fusiform gyrus (FuG), and cerebellum during handwriting, suggesting that an adult-like brain activation pattern emerges by middle childhood. Moreover, children showed left-lateralized and bilateral activation of motor regions and right-lateralized activation of the FuG and cerebellum during handwriting, suggesting that functional lateralization of handwriting is not fully established by this age. Finally, the activation of Exner’s area and the lateralization of the IPS and cerebellum during handwriting were correlated with reading skills, possibly representing a neural link between handwriting and reading in children. Collectively, this study reveals the brain correlates of handwriting and their relation to reading development in Chinese children, offering new insight into the development of handwriting and reading skills. Full article
(This article belongs to the Section Neuropsychology)
Show Figures

Figure 1

16 pages, 2122 KiB  
Article
Facilitation of Hand Proprioceptive Processing in Paraplegic Individuals with Long-Term Wheelchair Sports Training
by Tomoyo Morita and Eiichi Naito
Brain Sci. 2022, 12(10), 1295; https://doi.org/10.3390/brainsci12101295 - 26 Sep 2022
Cited by 2 | Viewed by 1730
Abstract
Previous studies have revealed drastic changes in motor processing in individuals with congenital or acquired limb deficiencies and dysfunction. However, little is known about whether their brains also exhibit characteristic proprioceptive processing. Using functional magnetic resonance imaging, we examined the brain activity characteristics [...] Read more.
Previous studies have revealed drastic changes in motor processing in individuals with congenital or acquired limb deficiencies and dysfunction. However, little is known about whether their brains also exhibit characteristic proprioceptive processing. Using functional magnetic resonance imaging, we examined the brain activity characteristics of four individuals with congenital or acquired paraplegia (paraplegic group) who underwent long-term wheelchair sports training, when they passively experienced a right-hand movement (passive task) and when they actively performed a right-hand motor task (active task), compared to 37 able-bodied individuals (control group). Compared with the control group, the paraplegic group showed significantly greater activity in the foot section of the left primary motor cortex and in the inferior frontoparietal proprioceptive network during the passive task. In the paraplegic group, the left intraparietal sulcus region was activated during the passive task, but suppressed during the active task, which was not observed in the control group. This shows the facilitation of hand proprioceptive processing and unique usage of the intraparietal sulcus region in proprioceptive motor processing in the brains of paraplegic individuals with long-term wheelchair sports training. Full article
Show Figures

Figure 1

15 pages, 2237 KiB  
Article
View Normalization of Object Size in the Right Parietal Cortex
by Sylvia Hoba, Gereon R. Fink, Hang Zeng and Ralph Weidner
Vision 2022, 6(3), 41; https://doi.org/10.3390/vision6030041 - 1 Jul 2022
Cited by 4 | Viewed by 2607
Abstract
Prior knowledge alters perception already on early levels of processing. For instance, judging the display size of an object is affected by its familiar size. Using functional magnetic resonance imaging, we investigated the neural processes involved in resolving ambiguities between familiar object size [...] Read more.
Prior knowledge alters perception already on early levels of processing. For instance, judging the display size of an object is affected by its familiar size. Using functional magnetic resonance imaging, we investigated the neural processes involved in resolving ambiguities between familiar object size and physical object size in 33 healthy human subjects. The familiar size was either small or large, and the object was displayed as either small or large. Thus, the size of the displayed object was either congruent or incongruent with its internally stored canonical size representation. Subjects were asked to indicate where the stimuli appeared on the screen as quickly and accurately as possible, thereby ensuring that differential activations cannot be ascribed to explicit object size judgments. Incongruent (relative to congruent) object displays were associated with enhanced activation of the right intraparietal sulcus (IPS). These data are consistent with but extend previous patient studies, which found the right parietal cortex involved in matching visual objects presented atypically to prototypical object representations, suggesting that the right IPS supports view normalization of objects. In a second experiment, using a parametric design, a region-of-interest analysis supported this notion by showing that increases in size mismatch between the displayed size of an object and its familiar viewing size were associated with an increased right IPS activation. We conclude that the right IPS performs view normalization of mismatched information about the internally stored prototypical size and the current viewing size of an object. Full article
(This article belongs to the Special Issue Size Constancy for Perception and Action)
Show Figures

Figure 1

29 pages, 3224 KiB  
Article
Impaired Arithmetic Fact Retrieval in an Adult with Developmental Dyscalculia: Evidence from Behavioral and Functional Brain Imaging Data
by Silke M. Göbel, Rebecca Terry, Elise Klein, Mark Hymers and Liane Kaufmann
Brain Sci. 2022, 12(6), 735; https://doi.org/10.3390/brainsci12060735 - 3 Jun 2022
Cited by 8 | Viewed by 3985
Abstract
Developmental dyscalculia (DD) is a developmental disorder characterized by arithmetic difficulties. Recently, it has been suggested that the neural networks supporting procedure-based calculation (e.g., in subtraction) and left-hemispheric verbal arithmetic fact retrieval (e.g., in multiplication) are partially distinct. Here we compared the neurofunctional [...] Read more.
Developmental dyscalculia (DD) is a developmental disorder characterized by arithmetic difficulties. Recently, it has been suggested that the neural networks supporting procedure-based calculation (e.g., in subtraction) and left-hemispheric verbal arithmetic fact retrieval (e.g., in multiplication) are partially distinct. Here we compared the neurofunctional correlates of subtraction and multiplication in a 19-year-old student (RM) with DD to 18 age-matched controls. Behaviorally, RM performed significantly worse than controls in multiplication, while subtraction was unaffected. Neurofunctional differences were most pronounced regarding multiplication: RM showed significantly stronger activation than controls not only in left angular gyrus but also in a fronto-parietal network (including left intraparietal sulcus and inferior frontal gyrus) typically activated during procedure-based calculation. Region-of-interest analyses indicated group differences in multiplication only, which, however, did not survive correction for multiple comparisons. Our results are consistent with dissociable and processing-specific, but not operation-specific neurofunctional networks. Procedure-based calculation is not only associated with subtraction but also with (untrained) multiplication facts. Only after rote learning, facts can be retrieved quasi automatically from memory. We suggest that this learning process and the associated shift in activation patterns has not fully occurred in RM, as reflected in her need to resort to procedure-based strategies to solve multiplication facts. Full article
Show Figures

Figure 1

17 pages, 1955 KiB  
Article
Threat Detection in Nearby Space Mobilizes Human Ventral Premotor Cortex, Intraparietal Sulcus, and Amygdala
by Aline W. de Borst and Beatrice de Gelder
Brain Sci. 2022, 12(3), 391; https://doi.org/10.3390/brainsci12030391 - 15 Mar 2022
Cited by 13 | Viewed by 3660
Abstract
In the monkey brain, the precentral gyrus and ventral intraparietal area are two interconnected brain regions that form a system for detecting and responding to events in nearby “peripersonal” space (PPS), with threat detection as one of its major functions. Behavioral studies point [...] Read more.
In the monkey brain, the precentral gyrus and ventral intraparietal area are two interconnected brain regions that form a system for detecting and responding to events in nearby “peripersonal” space (PPS), with threat detection as one of its major functions. Behavioral studies point toward a similar defensive function of PPS in humans. Here, our aim was to find support for this hypothesis by investigating if homolog regions in the human brain respond more strongly to approaching threatening stimuli. During fMRI scanning, naturalistic social stimuli were presented in a 3D virtual environment. Our results showed that the ventral premotor cortex and intraparietal sulcus responded more strongly to threatening stimuli entering PPS. Moreover, we found evidence for the involvement of the amygdala and anterior insula in processing threats. We propose that the defensive function of PPS may be supported by a subcortical circuit that sends information about the relevance of the stimulus to the premotor cortex and intraparietal sulcus, where action preparation is facilitated when necessary. Full article
(This article belongs to the Special Issue Social Cognition across Healthy and Neuropsychiatric Conditions)
Show Figures

Figure 1

13 pages, 1321 KiB  
Article
Exploration of Functional Connectivity Changes Previously Reported in Fibromyalgia and Their Relation to Psychological Distress and Pain Measures
by Helene van Ettinger-Veenstra, Rebecca Boehme, Bijar Ghafouri, Håkan Olausson, Rikard K. Wicksell and Björn Gerdle
J. Clin. Med. 2020, 9(11), 3560; https://doi.org/10.3390/jcm9113560 - 5 Nov 2020
Cited by 25 | Viewed by 3926
Abstract
Neural functional connectivity changes in the default mode network (DMN), Central executive network (CEN), and insula have been implicated in fibromyalgia (FM) but stem from a sparse set of small-scale studies with limited power for the investigation of confounding effects. We investigated whether [...] Read more.
Neural functional connectivity changes in the default mode network (DMN), Central executive network (CEN), and insula have been implicated in fibromyalgia (FM) but stem from a sparse set of small-scale studies with limited power for the investigation of confounding effects. We investigated whether anxiety, depression, pain sensitivity, and pain intensity modulated functional connectivity related to DMN nodes, CEN nodes, and insula. Resting-state functional magnetic resonance imaging data were collected from 31 females with FM and 28 age-matched healthy controls. Connectivity was analysed with a region-based connectivity analysis between DMN nodes in ventromedial prefrontal cortex (vmPFC) and posterior cingulate cortex, CEN nodes in the intraparietal sulcus (IPS), and bilateral insula. FM patients displayed significantly higher levels of anxiety and depressive symptoms than controls. The right IPS node of the CEN showed a higher level of connectivity strength with right insula in FM with higher pain intensity compared to controls. More anxiety symptoms in FM correlated with higher levels of connectivity strength between the vmPFC DMN node and right sensorimotor cortex. These findings support the theory of altered insular connectivity in FM and also suggest altered IPS connectivity in FM. Interestingly, no change in insular connectivity with DMN was observed. Full article
Show Figures

Figure 1

11 pages, 1871 KiB  
Article
Effects of Excitatory Repetitive Transcranial Magnetic Stimulation of the P3 Point in Chronic Stroke Patients—Case Reports
by Ronaldo Luis Da Silva, Angela Maria Costa De Souza, Francielly Ferreira Santos, Sueli Toshie Inoue, Johanne Higgins and Victor Frak
Brain Sci. 2018, 8(5), 78; https://doi.org/10.3390/brainsci8050078 - 28 Apr 2018
Cited by 1 | Viewed by 7045
Abstract
Objective: To evaluate the effects of excitatory repetitive transcranial magnetic stimulation (rTMS) of the international 10–20 system P3 point (intraparietal sulcus region) in chronic patients with a frontal lesion and parietal sparing due to stroke on the impaired upper (UL) and lower limb [...] Read more.
Objective: To evaluate the effects of excitatory repetitive transcranial magnetic stimulation (rTMS) of the international 10–20 system P3 point (intraparietal sulcus region) in chronic patients with a frontal lesion and parietal sparing due to stroke on the impaired upper (UL) and lower limb (LL) as measured by the Fugl-Meyer Assessment (FMA). Methods: Three patients (C1: 49.83/2.75, C2: 53.17/3.83, C3: 63.33/3.08-years-old at stroke/years post-stroke, respectively) received two weeks (five days/week) of rTMS at 10 Hz of P3. A patient was treated in similar conditions with a sham coil (S1: 56.58/4.33). Patients were evaluated before, after, and two months post-treatment (A1, A2, and A3, respectively). Results: For LL, the scores of the motor function subsection of C1 and C3 as well as the sensory function of C2 increased by A2 and remained by A3. For UL, the score of the motor function of C2 and C3 also increased, but the score of C3 decreased by A3. The score of the range of motion subsection of C3 increased by the two follow-up evaluations. Conclusion: This study suggests excitatory rTMS over P3 may be of use for some chronic stroke patients, but these findings need to be verified in a future clinical trial. Full article
Show Figures

Figure 1

10 pages, 434 KiB  
Article
Control of Visual Selection During Visual Search in the Human Brain
by Manuel C. Olma, Tobias H. Donner and Stephan A. Brandt
J. Eye Mov. Res. 2007, 1(1), 1-10; https://doi.org/10.16910/jemr.1.1.4 - 16 Nov 2007
Viewed by 106
Abstract
How do we find a target object in a cluttered visual scene? Targets carrying unique salient features can be found in parallel without directing attention, whereas targets defined by feature conjunctions or non-salient features need to be scrutinized in a serial attentional process [...] Read more.
How do we find a target object in a cluttered visual scene? Targets carrying unique salient features can be found in parallel without directing attention, whereas targets defined by feature conjunctions or non-salient features need to be scrutinized in a serial attentional process in order to be identified. In this article, we review a series of experiments in which we used fMRI to probe the neural basis of this active search process in the human brain. In all experiments, we compared the fMRI signal between a difficult and an easy visual search (each performed without eye movements) in order to isolate neural activity reflecting the search process from other components such as stimulus responses and movementrelated activity. The difficult search was either a conjunction search or a hard feature search and compared with an easy feature search, matched in visual stimulation and motor requirements. During both, the conjunction search and the hard feature search the frontal eye fields (FEF) and three parietal regions located in the intraparietal sulcus (IPS) were differentially activated: the anterior and posterior part of the intraparietal sulcus (AIPS, PIPS) as well as the junction of the intraparietal with the transverse occipital sulcus (IPTO). Only in PIPS, the modulation strength was most indistinguishable between conjunction and hard feature search. In a further experiment we showed that AIPS and IPTO are involved in visual conjunction search even in the absence of distractors; by contrast, the involvement of PIPS seems to depend on the presence of distractors. Taken together, these findings from these experiments demonstrate that all four key nodes of the human ’frontoparietal attention network’ are generally engaged in the covert selection process of visual search. But they also suggest that these areas play differential roles, perhaps reflecting different sub-processes in active search. We conclude by discussing a number of such sub-processes, such as the direction of spatial attention, visual feature binding, and the active suppression of distractors. Full article
Show Figures

Figure 1

Back to TopTop