Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = intracranial electrodes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 551 KB  
Article
Separating Subjective from Objective Food Value in the Human Insula: An Exploratory Study Using Intracranial EEG
by Benjamin Hébert-Seropian, Olivier Boucher, Daphné Citherlet, Manon Robert, François Richer and Dang Khoa Nguyen
Brain Sci. 2025, 15(6), 593; https://doi.org/10.3390/brainsci15060593 - 31 May 2025
Viewed by 1274
Abstract
Background/Objectives: The human insula is a key structure implicated in integrating internal states and external food cues, yet its precise role remains unclear, in part due to the temporal limitations of neuroimaging techniques like fMRI. To address this gap, we conducted an [...] Read more.
Background/Objectives: The human insula is a key structure implicated in integrating internal states and external food cues, yet its precise role remains unclear, in part due to the temporal limitations of neuroimaging techniques like fMRI. To address this gap, we conducted an exploratory study using an intracranial EEG (iEEG) to investigate how the insula encodes both the subjective and objective properties of food-related stimuli, and how this encoding is modulated by hunger and satiety. Methods: Eight patients with drug-resistant epilepsy undergoing a pre-surgical evaluation between 2017 and 2023 participated in this study. Depth electrodes implanted in the insular cortex recorded event-related potentials (ERPs) in response to visual food cues. The sessions were conducted in two prandial states (hungry and satiated). The subjective ratings (appetite and palatability) and objective nutritional values (e.g., calories, carbohydrates) were collected and analyzed using paired t-tests, MANOVAs, and partial correlations. Results: Hunger increased the ERP amplitudes within the 350–450 ms interval, consistent with the EPIC model and positive alliesthesia, while satiety unexpectedly enhanced the early responses (150–250 ms). Importantly, the neural activity related to nutritional values was largely uncorrelated with the subjective ratings, suggestive of distinct processing streams. The mid- and posterior insula showed greater sensitivity to both subjective and nutritional information than the anterior insula. Conclusions: These findings offer novel electrophysiological insights into how the insula differentiates between implicit and explicit food-related signals, depending on the homeostatic state. This work supports a dual-route model of food cue processing, and may inform interventions targeting insular activity in disordered eating. Full article
(This article belongs to the Section Molecular and Cellular Neuroscience)
Show Figures

Figure 1

19 pages, 1971 KB  
Article
Safety of Simultaneous Scalp and Intracranial EEG and fMRI: Evaluation of RF-Induced Heating
by Hassan B. Hawsawi, Anastasia Papadaki, Vejay N. Vakharia, John S. Thornton, David W. Carmichael, Suchit Kumar and Louis Lemieux
Bioengineering 2025, 12(6), 564; https://doi.org/10.3390/bioengineering12060564 - 24 May 2025
Viewed by 800
Abstract
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue [...] Read more.
The acquisition of electroencephalography (EEG) concurrently with functional magnetic resonance imaging (fMRI) requires a careful consideration of the health hazards resulting from interactions between the scanner’s electromagnetic fields and EEG recording equipment. The primary safety concern is excessive RF-induced heating of the tissue in the vicinity of electrodes. We have previously demonstrated that concurrent intracranial EEG (icEEG) and fMRI data acquisitions (icEEG-fMRI) can be performed with acceptable risk in specific conditions using a head RF transmit coil. Here, we estimate the potential additional heating associated with the addition of scalp EEG electrodes using a body transmit RF coil. In this study, electrodes were placed in clinically realistic positions on a phantom in two configurations: (1) icEEG electrodes only, and (2) following the addition of subdermal scalp electrodes. Heating was measured during MRI scans using a body transmit coil with a high specific absorption rate (SAR), TSE (turbo spin echo), and low SAR gradient-echo EPI (echo-planar imaging) sequences. During the application of the high-SAR sequence, the maximum temperature change for the intracranial electrodes was +2.8 °C. The addition of the subdural scalp EEG electrodes resulted in a maximum temperature change for the intracranial electrodes of 2.1 °C and +0.6 °C across the scalp electrodes. For the low-SAR sequence, the maximum temperature increase across all intracranial and scalp electrodes was +0.7 °C; in this condition, the temperature increases around the intracranial electrodes were below the detection level. Therefore, in the experimental conditions (MRI scanner, electrode, and wire configurations) used at our centre for icEEG-fMRI, adding six scalp EEG electrodes did not result in significant additional localised RF-induced heating compared to the model using icEEG electrodes only. Full article
(This article belongs to the Special Issue Multimodal Neuroimaging Techniques: Progress and Application)
Show Figures

Figure 1

18 pages, 3090 KB  
Article
Microelectrode Implantation in Human Insula: Technical Challenges and Recording Insights
by Daphné Citherlet, Sami Heymann, Maya Aderka, Katarzyna Jurewicz, B. Suresh Krishna, Manon Robert, Alain Bouthillier, Olivier Boucher and Dang Khoa Nguyen
Brain Sci. 2025, 15(6), 550; https://doi.org/10.3390/brainsci15060550 - 23 May 2025
Viewed by 680
Abstract
Background/Objectives: Intracranial macroelectrode implantation is a pivotal clinical tool in the evaluation of drug-resistant epilepsy, allowing further insights into the localization of the epileptogenic zone and the delineation of eloquent cortical regions through cortical stimulation. Additionally, it provides an avenue to study [...] Read more.
Background/Objectives: Intracranial macroelectrode implantation is a pivotal clinical tool in the evaluation of drug-resistant epilepsy, allowing further insights into the localization of the epileptogenic zone and the delineation of eloquent cortical regions through cortical stimulation. Additionally, it provides an avenue to study brain functions by analyzing cerebral responses during neuropsychological paradigms. By combining macroelectrodes with microelectrodes, which allow recording the activity of individual neurons or smaller neural clusters, recordings could provide deeper insights into neuronal microcircuits and the brain’s transitions in epilepsy and contribute to a better understanding of neuropsychological functions. In this study, one or two hybrid macro-micro electrodes were implanted in the anterior-inferior insular region in patients with refractory epilepsy. We report our experience and share some preliminary results; we also provide some recommendations regarding the implantation procedure for hybrid electrodes in the insular cortex. Methods: Stereoelectroencephalography was performed in 13 patients, with one or two hybrid macro-microelectrodes positioned in the insular region in each patient. Research neuropsychological paradigms could not be implemented in two patients for clinical reasons. In total, 23 hybrid macro-microelectrodes with eight microcontacts each were implanted, of which 20 were recorded. Spiking activity was detected and assessed using WaveClus3. Results: No spiking neural activity was detected in the microcontacts of the first seven patients. After iterative refinement during this process, successful recordings were obtained from 13 microcontacts in the anterior-inferior insula in the last four patients (13/64, 20.3%). Hybrid electrode implantation was uneventful with no complications. Obstacles included the absence of spiking activity signals, unsuccessful microwire dispersion, and the interference of environmental electrical noise in recordings. Conclusions: Human microelectrode recording presents a complex array of challenges; however, it holds the potential to facilitate a more comprehensive understanding of individual neuronal attributes and their specific stimulus responses. Full article
(This article belongs to the Special Issue Understanding the Role and Functions of the Insula in the Brain)
Show Figures

Figure 1

19 pages, 18304 KB  
Article
Amplitude of Intracranial Induced Electric Fields Does Not Linearly Decrease with Age: A Computational Study of Anatomical Effects in Adults
by Jianxu Zhang, Zilong Yan, Anshun Kang, Jian Ouyang, Lihua Ma, Xinyue Wang, Jinglong Wu, Dingjie Suo, Shintaro Funahashi, Wei Meng, Li Wang and Jian Zhang
Biosensors 2025, 15(3), 185; https://doi.org/10.3390/bios15030185 - 13 Mar 2025
Viewed by 1004
Abstract
Transcranial electrical stimulation, as a means of neural modulation, is increasingly favored by researchers. The distribution and magnitude of the electric field generated within the brain may directly affect the results of neural modulation. Therefore, it is important to clarify the change trend [...] Read more.
Transcranial electrical stimulation, as a means of neural modulation, is increasingly favored by researchers. The distribution and magnitude of the electric field generated within the brain may directly affect the results of neural modulation. Therefore, it is important to clarify the change trend of the cortical electric field and the determinants of the induced electric field in the endodermis at different ages during the adult life cycle. In this study, we used SimNIBS software to perform MR image segmentation and realistic head model reconstruction on 476 individuals (aged 18 to 88 years old) and calculated the cortical electric field of four electrode montages commonly used in cognitive tasks. We divided all participants into groups by age with a span of 10 years for each group and compared the electric field distribution patterns, electric field intensities, and focalities of the cortexes and regions of interest related to cognitive tasks within groups. The degree of influence of global and local anatomical parameters on the electric field was analyzed using a stepwise regression model. The results showed that, in the cortexes and regions of interest, the variability of electric field distribution patterns was highest in adolescents (<20 years old) and elderly individuals (>80 years old). Moreover, throughout the adult lifespan, the electric field induced by transcranial electrical stimulation did not decrease linearly with age but rather presented a U-shaped pattern. In terms of the entire adult life cycle, compared with global anatomical parameters (intracranial brain tissue volume), local anatomical parameters (such as scalp or skull thickness below the electrode) have a greater impact on the amplitude of the intracranial electric field. Our research results indicated that it is necessary to consider the effects caused by different brain tissues when using transcranial electrical stimulation to modulate or treat individuals of different ages. Full article
Show Figures

Figure 1

17 pages, 12017 KB  
Article
Dimensionality Reduction and Electrode Arrangement Optimization for an Electric Field Source Seeking Surgical Navigation Method
by Yuxin Fang, Fan Yang, Wei He, Xing Li and Xinheng Li
Sensors 2025, 25(5), 1378; https://doi.org/10.3390/s25051378 - 24 Feb 2025
Viewed by 574
Abstract
This study proposes a Dimensionality Reduction Electric Field Source Seeking (EFSS) method for real-time, high-precision navigation in intracranial puncture surgeries. The method integrates internal localization electrodes and external potential measurement electrodes to minimize surgical trauma while ensuring the accurate localization and guidance of [...] Read more.
This study proposes a Dimensionality Reduction Electric Field Source Seeking (EFSS) method for real-time, high-precision navigation in intracranial puncture surgeries. The method integrates internal localization electrodes and external potential measurement electrodes to minimize surgical trauma while ensuring the accurate localization and guidance of surgical instruments. To optimize the electrode arrangement, two evaluation metrics—Mean Response Coefficient (MRC) and MRC-mean—were introduced. The simulation results demonstrated the effectiveness of these metrics, with the optimal arrangement achieving an average localization error below 2 mm and a 56% reduction in error after optimization. Experimental validation was conducted using a brain model with conductivity properties similar to those of human tissue. Localization experiments confirmed the robustness and accuracy of the EFSS method, with all results showing consistent repeatability and monotonic trends in performance across different electrode configurations. This study highlights the potential of the dimensionality reduction EFSS method as a novel and effective approach for navigation in minimally invasive intracranial surgeries. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

20 pages, 3739 KB  
Article
Frameless Stereotaxy in Stereoelectroencephalography Using Intraoperative Computed Tomography
by Alexander Grote, Marko Gjorgjevski, Barbara Carl, Daniel Delev, Susanne Knake, Katja Menzler, Christopher Nimsky and Miriam H. A. Bopp
Brain Sci. 2025, 15(2), 184; https://doi.org/10.3390/brainsci15020184 - 12 Feb 2025
Cited by 1 | Viewed by 1383
Abstract
Background: Pharmacoresistant epilepsy affects approximately one-third of all epilepsy patients, and resective surgery may offer favorable outcomes for carefully selected patients with focal epilepsy. The accurate identification of the epileptogenic zone (EZ) is essential for successful surgery, particularly in cases where non-invasive diagnostics [...] Read more.
Background: Pharmacoresistant epilepsy affects approximately one-third of all epilepsy patients, and resective surgery may offer favorable outcomes for carefully selected patients with focal epilepsy. The accurate identification of the epileptogenic zone (EZ) is essential for successful surgery, particularly in cases where non-invasive diagnostics are inconclusive. Invasive diagnostics with stereoelectroencephalography (SEEG) offer a reliable approach to localizing the EZ, especially in MRI-negative cases. Methods: This retrospective study analyzed the data of 22 patients with pharmacoresistant epilepsy who underwent frameless stereotactic SEEG electrode implantation with automated CT-based registration between September 2016 and November 2024. For measuring accuracy, Euclidean distance, radial deviation, angular deviation, and depth deviation were calculated for each electrode. Results: A total of 153 depth electrodes were implanted, targeting various cortical regions. The median Euclidean distance at the entry point was 1.54 mm (IQR 1.31), with a radial deviation of 1.33 mm (IQR 1.32). At the target level, the median Euclidean distance was 2.61 mm (IQR 1.53), with a radial deviation of 1.67 mm (IQR 1.54) and depth deviation of 0.95 mm (IQR 2.43). Accuracy was not significantly affected by electrode order, anatomical location, skull thickness, or intracranial length. Conclusions: These findings demonstrate that frameless stereotactic SEEG electrode implantation is safe and feasible for identifying the EZ. The integration of automatic intraoperative CT-based registration ensures precision. While maintaining workflow efficiency, it achieves accuracy comparable to frame-based methods. Further studies with larger cohorts are warranted to validate these results and assess their impact on surgical outcomes. Full article
(This article belongs to the Special Issue Application of Surgery in Epilepsy)
Show Figures

Figure 1

9 pages, 3583 KB  
Article
Awake Craniotomy in Epilepsy Surgery: A Case Series and Proposal for Three Different Scenarios
by Takehiro Uda, Yuta Tanoue, Toshiyuki Kawashima, Vich Yindeedej, Shugo Nishijima, Noritsugu Kunihiro, Ryoko Umaba, Kotaro Ishimoto and Takeo Goto
Brain Sci. 2024, 14(10), 958; https://doi.org/10.3390/brainsci14100958 - 25 Sep 2024
Viewed by 1382
Abstract
Objective: Awake craniotomy (AWC) allows intraoperative evaluation of functions involving the cortical surface and subcortical fibers. In epilepsy surgery, indications for and the role of AWC have not been established because evaluation with intracranial electrodes is considered the gold standard. We report herein [...] Read more.
Objective: Awake craniotomy (AWC) allows intraoperative evaluation of functions involving the cortical surface and subcortical fibers. In epilepsy surgery, indications for and the role of AWC have not been established because evaluation with intracranial electrodes is considered the gold standard. We report herein our case series of patients who underwent AWC in epilepsy surgery and propose the scenarios for and roles of AWC. Methods: Patients who underwent AWC in epilepsy surgery at our institutions between 2014 and 2023 were included. Information about age, sex, etiology, location of epileptogenicity, seizure type, use of intracranial electrode placement, surgical complications, neurological deficits, additional surgery, and seizure outcomes was reviewed. Following a diagnostic and treatment flow for epilepsy surgery, we clarified three different scenarios and roles for AWC. Results: Ten patients underwent AWC. Three patients underwent AWC after non-invasive evaluations. Two patients underwent AWC after intracranial evaluation with stereotactic electroencephalography (SEEG). Five patients underwent AWC after intracranial evaluation with subdural grid electrodes (SDG). Among these, two patients were initially evaluated with SEEG and with SDG thereafter. One patient reported slight numbness in the hand, and one patient showed slight cognitive decline. Seizure outcomes according to the Engel outcome scale were class 1A in three patients, IIA in two patients, IIIA in four patients, and IVA in one patient. Conclusions: AWC can be used for purposes of epilepsy surgery in different situations, either immediately after non-invasive studies or as an additional invasive step after invasive monitoring with either SEEG or SDG. The application of AWC should be individualized according to each patient’s specific characteristics. Full article
(This article belongs to the Special Issue Valuable Experience in Clinical Neurology and Neurosurgery)
Show Figures

Figure 1

17 pages, 824 KB  
Review
The Persistent Paradox of Rapid Eye Movement Sleep (REMS): Brain Waves and Dreaming
by J. F. Pagel
Brain Sci. 2024, 14(7), 622; https://doi.org/10.3390/brainsci14070622 - 21 Jun 2024
Cited by 4 | Viewed by 5307
Abstract
The original conceptualization of REM sleep as paradoxical sleep was based on its EEG resembling wakefulness and its association with dreaming. Over time, the concept of paradox was expanded to include various associations with REM sleep, such as dream exclusivity, high recall, and [...] Read more.
The original conceptualization of REM sleep as paradoxical sleep was based on its EEG resembling wakefulness and its association with dreaming. Over time, the concept of paradox was expanded to include various associations with REM sleep, such as dream exclusivity, high recall, and pathophysiology. However, none of these associations are unique to REM sleep; they can also occur in other sleep states. Today, after more than fifty years of focused research, two aspects of REMS clearly retain paradoxical exclusivity. Despite the persistent contention that the EEG of human REMS consists of wake-like, low-voltage, non-synchronous electrical discharges, REMS is based on and defined by the intracranial electrical presence of 5–8 Hz. theta, which has always been the marker of REMS in other animals. The wake-like EEG used to define REMS on human polysomnography is secondary to a generalized absence of electrophysiological waveforms because the strong waves of intracranial theta do not propagate to scalp electrodes placed outside the skull. It is a persistent paradox that the theta frequency is restricted to a cyclical intracranial dynamic that does not extend beyond the lining of the brain. REMS has a persistent association with narratively long and salient dream reports. However, the extension of this finding to equate REMS with dreaming led to a foundational error in neuroscientific logic. Major theories and clinical approaches were built upon this belief despite clear evidence that dreaming is reported throughout sleep in definingly different physiologic and phenomenological forms. Few studies have addressed the differences between the dreams reported from the different stages of sleep so that today, the most paradoxical aspect of REMS dreaming may be how little the state has actually been studied. An assessment of the differences in dreaming between sleep stages could provide valuable insights into how dreaming relates to the underlying brain activity and physiological processes occurring during each stage. The brain waves and dreams of REMS persist as being paradoxically unique and different from waking and the other states of sleep consciousness. Full article
Show Figures

Figure 1

19 pages, 2321 KB  
Data Descriptor
In Vivo and In Vitro Electrochemical Impedance Spectroscopy of Acute and Chronic Intracranial Electrodes
by Kyle P. O’Sullivan, Brian J. Philip, Jonathan L. Baker, John D. Rolston, Mark E. Orazem, Kevin J. Otto and Christopher R. Butson
Data 2024, 9(6), 78; https://doi.org/10.3390/data9060078 - 6 Jun 2024
Cited by 2 | Viewed by 3285
Abstract
Invasive intracranial electrodes are used in both clinical and research applications for recording and stimulation of brain tissue, providing essential data in acute and chronic contexts. The impedance characteristics of the electrode–tissue interface (ETI) evolve over time and can change dramatically relative to [...] Read more.
Invasive intracranial electrodes are used in both clinical and research applications for recording and stimulation of brain tissue, providing essential data in acute and chronic contexts. The impedance characteristics of the electrode–tissue interface (ETI) evolve over time and can change dramatically relative to pre-implantation baseline. Understanding how ETI properties contribute to the recording and stimulation characteristics of an electrode can provide valuable insights for users who often do not have access to complex impedance characterizations of their devices. In contrast to the typical method of characterizing electrical impedance at a single frequency, we demonstrate a method for using electrochemical impedance spectroscopy (EIS) to investigate complex characteristics of the ETI of several commonly used acute and chronic electrodes. We also describe precise modeling strategies for verifying the accuracy of our instrumentation and understanding device–solution interactions, both in vivo and in vitro. Included with this publication is a dataset containing both in vitro and in vivo device characterizations, as well as some examples of modeling and error structure analysis results. These data can be used for more detailed interpretation of neural recordings performed on common electrode types, providing a more complete picture of their properties than is often available to users. Full article
Show Figures

Figure 1

22 pages, 1995 KB  
Review
Optical Intracranial Self-Stimulation (oICSS): A New Behavioral Model for Studying Drug Reward and Aversion in Rodents
by Rui Song, Omar Soler-Cedeño and Zheng-Xiong Xi
Int. J. Mol. Sci. 2024, 25(6), 3455; https://doi.org/10.3390/ijms25063455 - 19 Mar 2024
Cited by 1 | Viewed by 3171
Abstract
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral [...] Read more.
Brain-stimulation reward, also known as intracranial self-stimulation (ICSS), is a commonly used procedure for studying brain reward function and drug reward. In electrical ICSS (eICSS), an electrode is surgically implanted into the medial forebrain bundle (MFB) in the lateral hypothalamus or the ventral tegmental area (VTA) in the midbrain. Operant lever responding leads to the delivery of electrical pulse stimulation. The alteration in the stimulation frequency-lever response curve is used to evaluate the impact of pharmacological agents on brain reward function. If a test drug induces a leftward or upward shift in the eICSS response curve, it implies a reward-enhancing or abuse-like effect. Conversely, if a drug causes a rightward or downward shift in the functional response curve, it suggests a reward-attenuating or aversive effect. A significant drawback of eICSS is the lack of cellular selectivity in understanding the neural substrates underlying this behavior. Excitingly, recent advancements in optical ICSS (oICSS) have facilitated the development of at least three cell type-specific oICSS models—dopamine-, glutamate-, and GABA-dependent oICSS. In these new models, a comparable stimulation frequency-lever response curve has been established and employed to study the substrate-specific mechanisms underlying brain reward function and a drug’s rewarding versus aversive effects. In this review article, we summarize recent progress in this exciting research area. The findings in oICSS have not only increased our understanding of the neural mechanisms underlying drug reward and addiction but have also introduced a novel behavioral model in preclinical medication development for treating substance use disorders. Full article
Show Figures

Figure 1

12 pages, 1604 KB  
Article
Coating of Neural Electrodes with Platinum Nanoparticles Reduces and Stabilizes Impedance In Vitro and In Vivo in a Rat Model
by Svilen D. Angelov, Christoph Rehbock, Vaijayanthi Ramesh, Hans E. Heissler, Mesbah Alam, Stephan Barcikowski, Kerstin Schwabe and Joachim K. Krauss
Coatings 2024, 14(3), 352; https://doi.org/10.3390/coatings14030352 - 15 Mar 2024
Cited by 2 | Viewed by 2457
Abstract
The efficacy of electrodes that are chronically implanted and used in the context of deep brain stimulation (DBS) for the treatment of neurological disorders critically depends on stable impedance. Platinum–iridium electrodes were coated with laser-generated platinum nanoparticle colloids (PtNPs) via electrophoretic deposition using [...] Read more.
The efficacy of electrodes that are chronically implanted and used in the context of deep brain stimulation (DBS) for the treatment of neurological disorders critically depends on stable impedance. Platinum–iridium electrodes were coated with laser-generated platinum nanoparticle colloids (PtNPs) via electrophoretic deposition using pulsed direct currents (DC-EPD). Uncoated electrodes were used as controls. In vitro, electrodes were stimulated for four weeks in a 0.9% NaCl solution. For the in vivo (rats) study, coated electrodes were implanted in the left and uncoated control electrodes in the right subthalamic nucleus (STN). After two weeks of recovery, electrodes were stimulated for four weeks. Impedance measurements were conducted after each week of stimulation, both in vivo and in vitro. NP-coating resulted in a significant and long-lasting reduction in electrode impedance (p < 0.05) over four weeks of in vitro stimulation. Despite an initial increase in impedance after intracranial implantation, the impedance of the NP-coated electrodes was also reduced during in vivo stimulation over four weeks. NP-coated electrodes had a lower fluctuation of impedance during stimulation compared to uncoated electrodes both in vitro and in vivo (p < 0.05). Laser-generated PtNPs applied to electrodes by pulsed DC-EPD lead to lower and more stable electrode impedance during chronic stimulation, with the potential to enhance the performance of DBS systems during chronic use. Full article
(This article belongs to the Special Issue Nanostructures for Biomedical Applications)
Show Figures

Figure 1

13 pages, 3575 KB  
Article
Combined Depth and Subdural Electrodes for Lateralization of the Ictal Onset Zone in Mesial Temporal Lobe Epilepsy with Hippocampal Sclerosis
by Junhyung Kim, Joong Koo Kang, Sang Ahm Lee and Seok Ho Hong
Brain Sci. 2023, 13(11), 1547; https://doi.org/10.3390/brainsci13111547 - 3 Nov 2023
Cited by 2 | Viewed by 1426
Abstract
(1) Objective: This study aimed to explore the efficacy of conventional invasive techniques in confirming unilateral seizure onset localization in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and to investigate the association between electrode type and intracranial electroencephalography (EEG) pattern. (2) Methods: [...] Read more.
(1) Objective: This study aimed to explore the efficacy of conventional invasive techniques in confirming unilateral seizure onset localization in mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS) and to investigate the association between electrode type and intracranial electroencephalography (EEG) pattern. (2) Methods: This retrospective study encompasses patients diagnosed with MTLE-HS who underwent an invasive study prior to an anterior temporal lobectomy (ATL). Intracranial EEG features were assessed for 99 seizure events from 25 selected patients who achieved seizure remission with ATL after an invasive study using bilateral combined depth and subdural electrodes. Their findings were compared to those of 21 seizure events in eight patients who exhibited suboptimal seizure outcomes. (3) Results: For the distribution of electrodes that recorded the ictal onset, hippocampal depth electrodes recorded 96% of all seizure events, while subdural electrodes recorded 52%. Among the seizures recorded in subdural electrodes, 49% were localized in medial electrodes, with only 8% occurring in lateral electrodes. The initiation of seizures exclusively detected in hippocampal depth electrodes was associated with successful seizure remission, whereas those solely recorded in the lateral strip electrodes were often linked to refractory seizures after ATL. (4) Conclusions: These findings emphasize the importance of employing a combination of depth and subdural electrodes in invasive studies for patients with MTLE-HS to enhance the accuracy of lateralization. This also cautions against sole reliance on subdural electrodes without depth electrodes, which could lead to inaccurate localization. Full article
(This article belongs to the Special Issue Valuable Experience in Clinical Neurology and Neurosurgery)
Show Figures

Figure 1

38 pages, 37208 KB  
Article
Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe
by Koji Koizumi, Naoto Kunii, Kazutaka Ueda, Keisuke Nagata, Shigeta Fujitani, Seijiro Shimada and Masayuki Nakao
Biomedicines 2023, 11(8), 2262; https://doi.org/10.3390/biomedicines11082262 - 13 Aug 2023
Viewed by 2649
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory [...] Read more.
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up–Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF’s potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF’s application to memory and provides valuable insights into developing more efficient memory enhancement strategies. Full article
(This article belongs to the Section Biomedical Engineering and Materials)
Show Figures

Graphical abstract

15 pages, 2307 KB  
Article
The Role of Extra-Operative Cortical Stimulation and Mapping in the Surgical Management of Intracranial Gliomas
by Kostas N. Fountas, Alexandros Brotis, Thanasis Paschalis and Eftychia Kapsalaki
Brain Sci. 2022, 12(11), 1434; https://doi.org/10.3390/brainsci12111434 - 25 Oct 2022
Viewed by 2457
Abstract
Background: Aggressive resection without compromising the patient’s neurological status remains a significant challenge in treating intracranial gliomas. Our current study aims to evaluate the efficacy and safety of extra-operative stimulation and mapping via implanted subdural electrodes with or without depth (EOCSM), offering an [...] Read more.
Background: Aggressive resection without compromising the patient’s neurological status remains a significant challenge in treating intracranial gliomas. Our current study aims to evaluate the efficacy and safety of extra-operative stimulation and mapping via implanted subdural electrodes with or without depth (EOCSM), offering an alternative approach when awake mapping is contraindicated. Methods: Fifty-one patients undergoing EOCSM for glioma resection in our institution formed the sample study of our current retrospective study. We assessed the effectiveness and safety of our approach by measuring the extent of resection and recording the periprocedural complications, respectively. Results: The mean age of our participants was 58 years (±9.4 years). The lesion was usually located on the left side (80.4%) and affected the frontal lobe (51.0%). EOCSM was successful in 94.1% of patients. The stimulation and electrode implantation procedures lasted for a median of 2.0 h and 75 h, respectively. Stimulation-induced seizures and CSF leakage occurred in 13.7% and 5.9% of our cases. The mean extent of resection was 91.6%, whereas transient dysphasia occurred in 21.6% and transient hemiparesis in 5.9% of our patients, respectively. Conclusions: Extraoperative stimulation and mapping constitute a valid alternative mapping option in glioma patients who cannot undergo an awake craniotomy. Full article
(This article belongs to the Section Neuro-oncology)
Show Figures

Graphical abstract

16 pages, 49902 KB  
Article
Optimized Deep Brain Stimulation Surgery to Avoid Vascular Damage: A Single-Center Retrospective Analysis of Path Planning for Various Deep Targets by MRI Image Fusion
by Xin Wang, Nan Li, Jiaming Li, Huijuan Kou, Jing Wang, Jiangpeng Jing, Mingming Su, Yang Li, Liang Qu and Xuelian Wang
Brain Sci. 2022, 12(8), 967; https://doi.org/10.3390/brainsci12080967 - 22 Jul 2022
Cited by 10 | Viewed by 2832
Abstract
Co-registration of stereotactic and preoperative magnetic resonance imaging (MRI) images can serve as an alternative for trajectory planning. However, the role of this strategy has not yet been proven by any control studies, and the trajectories of commonly used targets have not been [...] Read more.
Co-registration of stereotactic and preoperative magnetic resonance imaging (MRI) images can serve as an alternative for trajectory planning. However, the role of this strategy has not yet been proven by any control studies, and the trajectories of commonly used targets have not been systematically studied. The purpose of this study was to analyze the trajectories for various targets, and to assess the role of trajectories realized on fused images in preventing intracranial hemorrhage (ICH). Data from 1019 patients who underwent electrode placement for deep brain stimulation were acquired. Electrode trajectories were not planned for 396 patients, whereas trajectories were planned for 623 patients. Preoperative various MRI sequences and frame-placed MRI images were fused for trajectory planning. The patients’ clinical characteristics, the stereotactic systems, intracranial hemorrhage cases, and trajectory angles were recorded and analyzed. No statistically significant differences in the proportions of male patients, patients receiving local anesthesia, and diseases or target distributions (p > 0.05) were found between the trajectory planning group and the non-trajectory planning group, but statistically significant differences were observed in the numbers of both patients and leads associated with symptomatic ICH (p < 0.05). Regarding the ring and arc angle values, statistically significant differences were found among various target groups (p < 0.05). The anatomic structures through which leads passed were found to be diverse. Trajectory planning based on MRI fusion is a safe technique for lead placement. The electrode for each given target has its own relatively constant trajectory. Full article
Show Figures

Figure 1

Back to TopTop