Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = intergenomic interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 7252 KiB  
Article
Characterization and Comparative Genomic Analysis of a Deep-Sea Bacillus Phage Reveal a Novel Genus
by Yuan Chen, Tianyou Zhang, Qiliang Lai, Menghui Zhang, Meishun Yu, Runying Zeng and Min Jin
Viruses 2023, 15(9), 1919; https://doi.org/10.3390/v15091919 - 13 Sep 2023
Viewed by 1798
Abstract
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus–host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from [...] Read more.
As the most abundant biological entities, viruses are the major players in marine ecosystems. However, our knowledge on virus diversity and virus–host interactions in the deep sea remains very limited. In this study, vB_BteM-A9Y, a novel bacteriophage infecting Bacillus tequilensis, was isolated from deep-sea sediments in the South China Sea. vB_BteM-A9Y has a hexametric head and a long, complex contractile tail, which are typical features of myophages. vB_BteM-A9Y initiated host lysis at 60 min post infection with a burst size of 75 PFU/cell. The phage genome comprises 38,634 base pairs and encodes 54 predicted open reading frames (ORFs), of which 27 ORFs can be functionally annotated by homology analysis. Interestingly, abundant ORFs involved in DNA damage repair were identified in the phage genome, suggesting that vB_BteM-A9Y encodes multiple pathways for DNA damage repair, which may help to maintain the stability of the host/phage genome. A BLASTn search of the whole genome sequence of vB_BteM-A9Y against the GenBank revealed no existing homolog. Consistently, a phylogenomic tree and proteome-based phylogenetic tree analysis showed that vB_BteM-A9Y formed a unique branch. Further comparative analysis of genomic nucleotide similarity and ORF homology of vB_BteM-A9Y with its mostly related phages showed that the intergenomic similarity between vB_BteM-A9Y and these phages was 0–33.2%. Collectively, based on the comprehensive morphological, phylogenetic, and comparative genomic analysis, we propose that vB_BteM-A9Y belongs to a novel genus under Caudoviricetes. Therefore, our study will increase our knowledge on deep-sea virus diversity and virus–host interactions, as well as expanding our knowledge on phage taxonomy. Full article
(This article belongs to the Topic Marine Viruses)
Show Figures

Figure 1

16 pages, 3353 KiB  
Article
Isolation and Characterization of a Novel Cyanophage Encoding Multiple Auxiliary Metabolic Genes
by Cuhuang Rong, Kun Zhou, Shuiming Li, Kang Xiao, Ying Xu, Rui Zhang, Yunlan Yang and Yu Zhang
Viruses 2022, 14(5), 887; https://doi.org/10.3390/v14050887 - 24 Apr 2022
Cited by 23 | Viewed by 4467
Abstract
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present [...] Read more.
As significant drivers of cyanobacteria mortality, cyanophages have been known to regulate the population dynamics, metabolic activities, and community structure of this most important marine autotrophic picoplankton and, therefore, influence the global primary production and biogeochemical cycle in aquatic ecosystems. In the present study, a lytic Synechococcus phage, namely S-SZBM1, was isolated and identified. Cyanophage S-SZBM1 has a double-stranded DNA genome of 177,834 bp with a G+C content of 43.31% and contains a total of 218 predicted ORFs and six tRNA genes. Phylogenetic analysis and nucleotide-based intergenomic similarity suggested that cyanophage S-SZBM1 belongs to a new genus under the family Kyanoviridae. A variety of auxiliary metabolic genes (AMGs) that have been proved or speculated to relate to photosynthesis, carbon metabolism, nucleotide synthesis and metabolism, cell protection, and other cell metabolism were identified in cyanophage S-SZBM1 genome and may affect host processes during infection. In addition, 24 of 32 predicted structural proteins were identified by a high-throughput proteome analysis which were potentially involved in the assembly processes of virion. The genomic and proteomic analysis features of cyanophage S-SZBM1 offer a valuable insight into the interactions between cyanophages and their hosts during infection. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

9 pages, 2880 KiB  
Article
enChIP-Seq Analyzer: A Software Program to Analyze and Interpret enChIP-Seq Data for the Detection of Physical Interactions between Genomic Regions
by Ashita Sarudate, Toshitsugu Fujita, Takahiro Nakayama and Hodaka Fujii
Genes 2022, 13(3), 472; https://doi.org/10.3390/genes13030472 - 7 Mar 2022
Viewed by 2555
Abstract
Accumulating evidence suggests that the physical interactions between genomic regions play critical roles in the regulation of genome functions, such as transcription and epigenetic regulation. Various methods to detect the physical interactions between genomic regions have been developed. We recently developed a method [...] Read more.
Accumulating evidence suggests that the physical interactions between genomic regions play critical roles in the regulation of genome functions, such as transcription and epigenetic regulation. Various methods to detect the physical interactions between genomic regions have been developed. We recently developed a method to search for genomic regions interacting with a locus of interest in a non-biased manner that combines pull-down of the locus using engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) and next-generation sequencing (NGS) analysis (enChIP-Seq). The clustered regularly interspaced short palindromic repeats (CRISPR) system, consisting of a nuclease-dead form of Cas9 (dCas9) and a guide RNA (gRNA), or transcription activator-like (TAL) proteins, can be used for enChIP. In enChIP-Seq, it is necessary to compare multiple datasets of enChIP-Seq data to unambiguously detect specific interactions. However, it is not always easy to analyze enChIP-Seq datasets to subtract non-specific interactions or identify common interactions. To facilitate such analysis, we developed the enChIP-Seq analyzer software. It enables easy extraction of common signals as well as subtraction of non-specific signals observed in negative control samples, thereby streamlining extraction of specific enChIP-Seq signals. enChIP-Seq analyzer will help users analyze enChIP-Seq data and identify physical interactions between genomic regions. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

18 pages, 314 KiB  
Review
Cytonuclear Genetic Incompatibilities in Plant Speciation
by Zoé Postel and Pascal Touzet
Plants 2020, 9(4), 487; https://doi.org/10.3390/plants9040487 - 10 Apr 2020
Cited by 42 | Viewed by 4571
Abstract
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We [...] Read more.
Due to the endosymbiotic origin of organelles, a pattern of coevolution and coadaptation between organellar and nuclear genomes is required for proper cell function. In this review, we focus on the impact of cytonuclear interaction on the reproductive isolation of plant species. We give examples of cases where species exhibit barriers to reproduction which involve plastid-nuclear or mito-nuclear genetic incompatibilities, and describe the evolutionary processes at play. We also discuss potential mechanisms of hybrid fitness recovery such as paternal leakage. Finally, we point out the possible interplay between plant mating systems and cytonuclear coevolution, and its consequence on plant speciation. Full article
(This article belongs to the Special Issue Co-Adaptation between the Nuclear and Organelle Genomes in Plants)
19 pages, 3894 KiB  
Article
Robust Cytonuclear Coordination of Transcription in Nascent Arabidopsis thaliana Autopolyploids
by Jeremy E. Coate, W. Max Schreyer, David Kum and Jeff J. Doyle
Genes 2020, 11(2), 134; https://doi.org/10.3390/genes11020134 - 28 Jan 2020
Cited by 15 | Viewed by 4247
Abstract
Polyploidy is hypothesized to cause dosage imbalances between the nucleus and the other genome-containing organelles (mitochondria and plastids), but the evidence for this is limited. We performed RNA-seq on Arabidopsis thaliana diploids and their derived autopolyploids to quantify the degree of inter-genome coordination [...] Read more.
Polyploidy is hypothesized to cause dosage imbalances between the nucleus and the other genome-containing organelles (mitochondria and plastids), but the evidence for this is limited. We performed RNA-seq on Arabidopsis thaliana diploids and their derived autopolyploids to quantify the degree of inter-genome coordination of transcriptional responses to nuclear whole genome duplication in two different organs (sepals and rosette leaves). We show that nuclear and organellar genomes exhibit highly coordinated responses in both organs. First, organelle genome copy number increased in response to nuclear whole genome duplication (WGD), at least partially compensating for altered nuclear genome dosage. Second, transcriptional output of the different cellular compartments is tuned to maintain diploid-like levels of relative expression among interacting genes. In particular, plastid genes and nuclear genes whose products are plastid-targeted show coordinated down-regulation, such that their expression levels relative to each other remain constant across ploidy levels. Conversely, mitochondrial genes and nuclear genes with mitochondrial targeting show either constant or coordinated up-regulation of expression relative to other nuclear genes. Thus, cytonuclear coordination is robust to changes in nuclear ploidy level, with diploid-like balance in transcript abundances achieved within three generations after nuclear whole genome duplication. Full article
(This article belongs to the Special Issue Cytonuclear Interactions in Polyploid Species)
Show Figures

Figure 1

Back to TopTop