Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = inhibitors for β-glucocerebrosidase

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4023 KiB  
Article
Investigating the Impact of the Parkinson’s-Associated GBA1 E326K Mutation on β-Glucocerebrosidase Dimerization and Interactome Dynamics Through an In Silico Approach
by Davide Pietrafesa, Alessia Casamassa, Barbara Benassi, Massimo Santoro, Massimo Marano, Claudia Consales, Jessica Rosati and Caterina Arcangeli
Int. J. Mol. Sci. 2024, 25(21), 11443; https://doi.org/10.3390/ijms252111443 - 24 Oct 2024
Cited by 2 | Viewed by 8438
Abstract
Heterozygous mutations or genetic variants in the GBA1 gene, which encodes for the β-glucocerebrosidase (GCase), a lysosomal hydrolase enzyme, may increase the risk of Parkinson’s disease (PD) onset. The heterozygous E326K form is one of the most common genetic risk factors for PD [...] Read more.
Heterozygous mutations or genetic variants in the GBA1 gene, which encodes for the β-glucocerebrosidase (GCase), a lysosomal hydrolase enzyme, may increase the risk of Parkinson’s disease (PD) onset. The heterozygous E326K form is one of the most common genetic risk factors for PD worldwide, but, to date, the underlying molecular mechanisms remain unclear. Here, we investigate the effect of the E326K on the structure, stability, dimerization process, and interaction mode with some proteins of the interactome of GCase using multiple molecular dynamics (MD) simulations at pH 5.5 and pH 7.0 to mimic the lysosomal and endoplasmic reticulum environments, respectively. The analysis of the MD trajectories highlights that the E326K mutation did not significantly alter the structural conformation of the catalytic dyad but significantly makes the structure of the dimeric complexes unstable, especially at lysosomal pH, potentially impacting the organization of the quaternary structure. Furthermore, the E326K mutation significantly impacts protein interactions by altering the binding mode with the activator Saposin C (SapC), reducing the binding affinity with the inhibitor α-Synuclein (α-Syn), and increasing the affinity for the Lysosomal integral membrane protein-2 (LIMP-2) transporter. Full article
Show Figures

Graphical abstract

17 pages, 5730 KiB  
Article
Whole Transcriptome Analysis of Substantia Nigra in Mice with MPTP-Induced Parkinsonism Bearing Defective Glucocerebrosidase Activity
by Tatiana Usenko, Anastasia Bezrukova, Margarita M. Rudenok, Katerina Basharova, Maria I. Shadrina, Petr A. Slominsky, Ekaterina Zakharova and Sofya Pchelina
Int. J. Mol. Sci. 2023, 24(15), 12164; https://doi.org/10.3390/ijms241512164 - 29 Jul 2023
Cited by 7 | Viewed by 2792
Abstract
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson’s disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD [...] Read more.
Mutations in the GBA1 gene represent the major genetic risk factor for Parkinson’s disease (PD). The lysosomal enzyme beta-glucocerebrosidase (GCase) encoded by the GBA1 gene participates in both the endolysosomal pathway and the immune response. Disruption of these mechanisms is involved in PD pathogenesis. However, molecular mechanisms of PD associated with GBA1 mutations (GBA-PD) are unknown today in particular due to the partial penetrance of GBA1 variants in PD. The modifiers of GBA1 penetrance have not been elucidated. We characterized the transcriptomic profiles of cells from the substantia nigra (SN) of mice with co-injection with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and selective inhibitor of GCase activity (conduritol-β-epoxide, (CBE)) to mimic PD bearing GCase dysfunction (MPTP+CBE), mice treated with MPTP, mice treated with CBE and control mice treated with injection of sodium chloride (NaCl) (vehicle). Differential expression analysis, pathway enrichment analysis, and outlier detection were performed. Functional clustering of differentially represented transcripts revealed more processes associated with the functioning of neurogenesis, inflammation, apoptosis and autophagy in MPTP+CBE and MPTP mice than in vehicle mice, with a more pronounced alteration of autophagy processes in MPTP+CBE mice than in MPTP mice. The PI3K-Akt-mTOR signaling pathway may be considered a potential target for therapy in PD with GCase dysfunction. Full article
(This article belongs to the Special Issue Advances in Human Hereditary Diseases: Genetics and Genomics Research)
Show Figures

Figure 1

16 pages, 5206 KiB  
Article
Exploring the Pathophysiologic Cascade Leading to Osteoclastogenic Activation in Gaucher Disease Monocytes Generated via CRISPR/Cas9 Technology
by Maximiliano Emanuel Ormazabal, Eleonora Pavan, Emilio Vaena, Dania Ferino, Jessica Biasizzo, Juan Marcos Mucci, Fabrizio Serra, Adriana Cifù, Maurizio Scarpa, Paula Adriana Rozenfeld and Andrea Elena Dardis
Int. J. Mol. Sci. 2023, 24(13), 11204; https://doi.org/10.3390/ijms241311204 - 7 Jul 2023
Cited by 5 | Viewed by 2362
Abstract
Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid β-glucosidase gene (GBA1), leading to a deficiency in the β-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features [...] Read more.
Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid β-glucosidase gene (GBA1), leading to a deficiency in the β-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features in GD patients. Although both defective bone formation and increased bone resorption due to osteoblast and osteoclast dysfunction contribute to GD bone pathology, the molecular bases are not fully understood, and bone disease is not completely resolved with currently available specific therapies. For this reason, using editing technology, our group has developed a reliable, isogenic, and easy-to-handle cellular model of GD monocytes (GBAKO-THP1) to facilitate GD pathophysiology studies and high-throughput drug screenings. In this work, we further characterized the model showing an increase in proinflammatory cytokines (Interleukin-1β and Tumor Necrosis Factor-α) release and activation of osteoclastogenesis. Furthermore, our data suggest that GD monocytes would display an increased osteoclastogenic potential, independent of their interaction with the GD microenvironment or other GD cells. Both proinflammatory cytokine production and osteoclastogenesis were restored at least, in part, by treating cells with the recombinant human GCase, a substrate synthase inhibitor, a pharmacological chaperone, and an anti-inflammatory compound. Besides confirming that this model would be suitable to perform high-throughput screening of therapeutic molecules that act via different mechanisms and on different phenotypic features, our data provided insights into the pathogenic cascade, leading to osteoclastogenesis exacerbation and its contribution to bone pathology in GD. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Figure 1

26 pages, 9381 KiB  
Article
Rotenone Blocks the Glucocerebrosidase Enzyme and Induces the Accumulation of Lysosomes and Autophagolysosomes Independently of LRRK2 Kinase in HEK-293 Cells
by Laura Patricia Perez-Abshana, Miguel Mendivil-Perez, Carlos Velez-Pardo and Marlene Jimenez-Del-Rio
Int. J. Mol. Sci. 2023, 24(13), 10589; https://doi.org/10.3390/ijms241310589 - 24 Jun 2023
Cited by 6 | Viewed by 2803
Abstract
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no [...] Read more.
Parkinson’s disease (PD) is a neurodegenerative disorder caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129 (p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further, the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces the loss of mitochondrial membrane potential (ΔΨm), and triggers the production of cleaved caspase 3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase) activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3, p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ΔΨm, reduced GCase activity, and the accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-β-epoxide (CBE). Taken together, these observations imply that the combined development of LRRK2 inhibitors and compounds for recovering GCase activity might be promising therapeutic agents for PD. Full article
(This article belongs to the Special Issue Understanding Parkinson's Disease)
Show Figures

Figure 1

24 pages, 3742 KiB  
Article
β-Glucocerebrosidase Deficiency Activates an Aberrant Lysosome-Plasma Membrane Axis Responsible for the Onset of Neurodegeneration
by Giulia Lunghi, Emma Veronica Carsana, Nicoletta Loberto, Laura Cioccarelli, Simona Prioni, Laura Mauri, Rosaria Bassi, Stefano Duga, Letizia Straniero, Rosanna Asselta, Giulia Soldà, Alessio Di Fonzo, Emanuele Frattini, Manuela Magni, Nara Liessi, Andrea Armirotti, Elena Ferrari, Maura Samarani and Massimo Aureli
Cells 2022, 11(15), 2343; https://doi.org/10.3390/cells11152343 - 29 Jul 2022
Cited by 14 | Viewed by 4443
Abstract
β-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic β-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson’s disease. Despite [...] Read more.
β-glucocerebrosidase is a lysosomal hydrolase involved in the catabolism of the sphingolipid glucosylceramide. Biallelic loss of function mutations in this enzyme are responsible for the onset of Gaucher disease, while monoallelic β-glucocerebrosidase mutations represent the first genetic risk factor for Parkinson’s disease. Despite this evidence, the molecular mechanism linking the impairment in β-glucocerebrosidase activity with the onset of neurodegeneration in still unknown. In this frame, we developed two in vitro neuronal models of β-glucocerebrosidase deficiency, represented by mouse cerebellar granule neurons and human-induced pluripotent stem cells-derived dopaminergic neurons treated with the specific β-glucocerebrosidase inhibitor conduritol B epoxide. Neurons deficient for β-glucocerebrosidase activity showed a lysosomal accumulation of glucosylceramide and the onset of neuronal damage. Moreover, we found that neurons react to the lysosomal impairment by the induction of their biogenesis and exocytosis. This latter event was responsible for glucosylceramide accumulation also at the plasma membrane level, with an alteration in lipid and protein composition of specific signaling microdomains. Collectively, our data suggest that β-glucocerebrosidase loss of function impairs the lysosomal compartment, establishing a lysosome–plasma membrane axis responsible for modifications in the plasma membrane architecture and possible alterations of intracellular signaling pathways, leading to neuronal damage. Full article
(This article belongs to the Special Issue Mechanisms of Neurodevelopment and Neurodegeneration)
Show Figures

Figure 1

10 pages, 2528 KiB  
Article
Seventy-Two-Hour LRRK2 Kinase Activity Inhibition Increases Lysosomal GBA Expression in H4, a Human Neuroglioma Cell Line
by Clara Ruz, José Luis Alcantud, Francisco Vives, Francisco Arrebola, John Hardy, Patrick A. Lewis, Claudia Manzoni and Raquel Duran
Int. J. Mol. Sci. 2022, 23(13), 6935; https://doi.org/10.3390/ijms23136935 - 22 Jun 2022
Cited by 2 | Viewed by 2751
Abstract
Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinson’s disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme β-Glucocerebrosidase [...] Read more.
Mutations in LRRK2 and GBA1 are key contributors to genetic risk of developing Parkinson’s disease (PD). To investigate how LRRK2 kinase activity interacts with GBA and contributes to lysosomal dysfunctions associated with the pathology of PD. The activity of the lysosomal enzyme β-Glucocerebrosidase (GCase) was assessed in a human neuroglioma cell model treated with two selective inhibitors of LRKK2 kinase activity (LRRK2-in-1 and MLi-2) and a GCase irreversible inhibitor, condutirol-beta-epoxide (CBE), under 24 and 72 h experimental conditions. We observed levels of GCase activity comparable to controls in response to 24 and 72 h treatments with LRRK2-in-1 and MLi-2. However, GBA protein levels increased upon 72 h treatment with LRRK2-in-1. Moreover, LC3-II protein levels were increased after both 24 and 72 h treatments with LRRK2-in-1, suggesting an activation of the autophagic pathway. These results highlight a possible regulation of lysosomal function through the LRRK2 kinase domain and suggest an interplay between LRRK2 kinase activity and GBA. Although further investigations are needed, the enhancement of GCase activity might restore the defective protein metabolism seen in PD. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Chronic and Degenerative Diseases)
Show Figures

Figure 1

16 pages, 1550 KiB  
Article
C5a Activates a Pro-Inflammatory Gene Expression Profile in Human Gaucher iPSC-Derived Macrophages
by Jacquelyn C. Serfecz, Afsoon Saadin, Clayton P. Santiago, Yuji Zhang, Søren M. Bentzen, Stefanie N. Vogel and Ricardo A. Feldman
Int. J. Mol. Sci. 2021, 22(18), 9912; https://doi.org/10.3390/ijms22189912 - 14 Sep 2021
Cited by 26 | Viewed by 4106
Abstract
Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme β-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of [...] Read more.
Gaucher disease (GD) is an autosomal recessive disorder caused by bi-allelic GBA1 mutations that reduce the activity of the lysosomal enzyme β-glucocerebrosidase (GCase). GCase catalyzes the conversion of glucosylceramide (GluCer), a ubiquitous glycosphingolipid, to glucose and ceramide. GCase deficiency causes the accumulation of GluCer and its metabolite glucosylsphingosine (GluSph) in a number of tissues and organs. In the immune system, GCase deficiency deregulates signal transduction events, resulting in an inflammatory environment. It is known that the complement system promotes inflammation, and complement inhibitors are currently being considered as a novel therapy for GD; however, the mechanism by which complement drives systemic macrophage-mediated inflammation remains incompletely understood. To help understand the mechanisms involved, we used human GD-induced pluripotent stem cell (iPSC)-derived macrophages. We found that GD macrophages exhibit exacerbated production of inflammatory cytokines via an innate immune response mediated by receptor 1 for complement component C5a (C5aR1). Quantitative RT-PCR and ELISA assays showed that in the presence of recombinant C5a (rC5a), GD macrophages secreted 8–10-fold higher levels of TNF-α compared to rC5a-stimulated control macrophages. PMX53, a C5aR1 blocker, reversed the enhanced GD macrophage TNF-α production, indicating that the observed effect was predominantly C5aR1-mediated. To further analyze the extent of changes induced by rC5a stimulation, we performed gene array analysis of the rC5a-treated macrophage transcriptomes. We found that rC5a-stimulated GD macrophages exhibit increased expression of genes involved in TNF-α inflammatory responses compared to rC5a-stimulated controls. Our results suggest that rC5a-induced inflammation in GD macrophages activates a unique immune response, supporting the potential use of inhibitors of the C5a-C5aR1 receptor axis to mitigate the chronic inflammatory abnormalities associated with GD. Full article
Show Figures

Figure 1

23 pages, 3388 KiB  
Article
N-Alkylated Iminosugar Based Ligands: Synthesis and Inhibition of Human Lysosomal β-Glucocerebrosidase
by Andreas Wolfsgruber, Martin Thonhofer, Patrick Weber, Seyed A. Nasseri, Roland Fischer, Michael Schalli, Arnold E. Stütz, Stephen G. Withers and Tanja M. Wrodnigg
Molecules 2020, 25(20), 4618; https://doi.org/10.3390/molecules25204618 - 11 Oct 2020
Cited by 6 | Viewed by 4144
Abstract
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis [...] Read more.
The scope of a series of N-alkylated iminosugar based inhibitors in the d-gluco as well as d-xylo configuration towards their interaction with human lysosomal β-glucocerebrosidase has been evaluated. A versatile synthetic toolbox has been developed for the synthesis of N-alkylated iminosugar scaffolds conjugated to a variety of terminal groups via a benzoic acid ester linker. The terminal groups such as nitrile, azide, alkyne, nonafluoro-tert-butyl and amino substituents enable follow-up chemistry as well as visualisation experiments. All compounds showed promising inhibitory properties as well as selectivities for β-glucosidases, some exhibiting activities in the low nanomolar range for β-glucocerebrosidase. Full article
(This article belongs to the Special Issue Targeting Carbohydrate–Protein Interactions)
Show Figures

Graphical abstract

12 pages, 1621 KiB  
Article
Effect of Substrate Reduction Therapy in Comparison to Enzyme Replacement Therapy on Immune Aspects and Bone Involvement in Gaucher Disease
by Renuka P. Limgala and Ozlem Goker-Alpan
Biomolecules 2020, 10(4), 526; https://doi.org/10.3390/biom10040526 - 31 Mar 2020
Cited by 15 | Viewed by 4808
Abstract
Gaucher disease (GD) is caused by mutations in the GBA gene, leading to deficient activity of the lysosomal enzyme glucocerebrosidase. Among all the symptoms across various organ systems, bone disease is a major concern as it causes high morbidity and reduces quality of [...] Read more.
Gaucher disease (GD) is caused by mutations in the GBA gene, leading to deficient activity of the lysosomal enzyme glucocerebrosidase. Among all the symptoms across various organ systems, bone disease is a major concern as it causes high morbidity and reduces quality of life. Enzyme replacement therapy (ERT) is the most accepted treatment; however, there are still unmet needs. As an alternative, substrate reduction therapy (SRT) was developed using glucosylceramide synthase inhibitors. In the current study, the effects of ERT vs. SRT were compared, particularly the immunological and bone remodeling aspects. GD subjects were divided into three cohorts based on their treatment at initial visit: ERT, SRT, and untreated (UT). Immunophenotyping showed no significant immune cell alterations between the cohorts. Expression of RANK/RANKL/Osteoprotegerin pathway components on immune cells and the secreted markers of bone turnover were analyzed. In the ERT cohort, no significant changes were observed in RANK, RANKL or serum biomarkers. RANKL on T lymphocytes, Osteopontin and MIP-1β decreased with SRT treatment indicating probable reduction in osteoclast activity. Other secreted factors, Osteocalcin and RANKL/Osteoprotegerin did not change with the treatment status. Insights from the study highlight personalized differences between subjects and possible use of RANK pathway components as markers for bone disease progression. Full article
Show Figures

Figure 1

18 pages, 4163 KiB  
Article
Selective Targeting of the Interconversion between Glucosylceramide and Ceramide by Scaffold Tailoring of Iminosugar Inhibitors
by Cécile Baudoin-Dehoux, Tessa Castellan, Frédéric Rodriguez, Arnaud Rives, Fabien Stauffert, Virginie Garcia, Thierry Levade, Philippe Compain and Yves Génisson
Molecules 2019, 24(2), 354; https://doi.org/10.3390/molecules24020354 - 19 Jan 2019
Cited by 5 | Viewed by 5243
Abstract
A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward [...] Read more.
A series of simple C-alkyl pyrrolidines already known as cytotoxic inhibitors of ceramide glucosylation in melanoma cells can be converted into their corresponding 6-membered analogues by means of a simple ring expansion. This study illustrated how an isomerisation from iminosugar pyrrolidine toward piperidine could invert their targeting from glucosylceramide (GlcCer) formation toward GlcCer hydrolysis. Thus, we found that the 5-membered ring derivatives did not inhibit the hydrolysis reaction of GlcCer catalysed by lysosomal β-glucocerebrosidase (GBA). On the other hand, the ring-expanded C-alkyl piperidine isomers, non-cytotoxic and inactive regarding ceramide glucosylation, revealed to be potent inhibitors of GBA. A molecular docking study showed that the positions of the piperidine ring of the compound 6b and its analogous 2-O-heptyl DIX 8 were similar to that of isofagomine. Furthermore, compound 6b promoted mutant GBA enhancements over 3-fold equivalent to that of the related O-Hept DIX 8 belonging to one of the most potent iminosugar-based pharmacological chaperone series reported to date. Full article
(This article belongs to the Special Issue Small Molecule Drug Design)
Show Figures

Figure 1

18 pages, 2327 KiB  
Article
Probing the Inhibitor versus Chaperone Properties of sp2-Iminosugars towards Human β-Glucocerebrosidase: A Picomolar Chaperone for Gaucher Disease
by Teresa Mena-Barragán, M. Isabel García-Moreno, Alen Sevšek, Tetsuya Okazaki, Eiji Nanba, Katsumi Higaki, Nathaniel I. Martin, Roland J. Pieters, José M. García Fernández and Carmen Ortiz Mellet
Molecules 2018, 23(4), 927; https://doi.org/10.3390/molecules23040927 - 17 Apr 2018
Cited by 32 | Viewed by 6002
Abstract
A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and [...] Read more.
A series of sp2-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 β-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N′-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives. Full article
(This article belongs to the Special Issue Glycomimetics: Design, Synthesis and Therapeutic Applications)
Show Figures

Graphical abstract

15 pages, 3267 KiB  
Article
Osteocyte Alterations Induce Osteoclastogenesis in an In Vitro Model of Gaucher Disease
by Constanza Bondar, Maximiliano Ormazabal, Andrea Crivaro, Malena Ferreyra-Compagnucci, María Victoria Delpino, Paula Adriana Rozenfeld and Juan Marcos Mucci
Int. J. Mol. Sci. 2017, 18(1), 112; https://doi.org/10.3390/ijms18010112 - 13 Jan 2017
Cited by 13 | Viewed by 6509
Abstract
Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in [...] Read more.
Gaucher disease (GD) is caused by mutations in the glucosylceramidase β (GBA 1) gene that confer a deficient level of activity of glucocerebrosidase (GCase). This deficiency leads to the accumulation of the glycolipid glucocerebroside in the lysosomes of cells, mainly in the monocyte/macrophage lineage. Its mildest form is Type I GD, characterized by non-neuronopathic involvement. Bone compromise is the most disabling aspect of the Gaucher disease. However, the pathophysiological aspects of skeletal alterations are not yet fully understood. The bone tissue homeostasis is maintained by a balance between resorption of old bone by osteoclasts and new bone formation by osteoblasts. A central player in this balance is the osteocyte as it controls both processes. We studied the involvement of osteocytes in an in vitro chemical model of Gaucher disease. The osteocyte cell line MLO-Y4 was exposed to conduritol-β-epoxide (CBE), an inhibitor of GCase, for a period of 7, 14 and 21 days. Conditioned media from CBE-treated osteocytes was found to induce osteoclast differentiation. GCase inhibition caused alterations in Cx43 expression and distribution pattern and an increase in osteocyte apoptosis. Osteoclast differentiation involved osteocyte apoptotic bodies, receptor activator of nuclear factor κ-B ligand (RANKL) and soluble factors. Thus, our results indicate that osteocytes may have a role to play in the bone pathophysiology of GD. Full article
Show Figures

Graphical abstract

6 pages, 944 KiB  
Review
Molecular Basis and Clinical Management of Gaucher Disease
by Maja Di Rocco, Andrea Loggini and Pierluigi Russo
Cardiogenetics 2013, 3(s1), e4; https://doi.org/10.4081/cardiogenetics.2013.s1.e4 - 27 Feb 2013
Cited by 1 | Viewed by 1
Abstract
Gaucher disease (GD) type I is an autosomal recessive disease caused by a genetic deficiency of lysosomal β-glucocerebrosidase that leads to accumulation of undergraded substrate glucocerebroside and other glycolipids, thus causing damage in different organs. GBA is the only gene in which mutations [...] Read more.
Gaucher disease (GD) type I is an autosomal recessive disease caused by a genetic deficiency of lysosomal β-glucocerebrosidase that leads to accumulation of undergraded substrate glucocerebroside and other glycolipids, thus causing damage in different organs. GBA is the only gene in which mutations are known to cause GD. Nearly 300 mutations have been identified in GD patients, including frame-shift mutations, point mutations, deletions, insertions, splice site mutations and recombinants. The variety of phenotypes associated to GD shows imperfect correlation with mutations. GD encompasses a spectrum of clinical findings from a perinatal lethal form to an asymptomatic form. However the classification of GD by clinical subtype is still useful in describing the wide range of clinical findings and broad variability in presentation. Three major clinical types are delineated: type I (chronic nonneuropathic), type II (acute neuropathic), and type III (chronic neuropathic). Patients with type I GD present with visceromegaly, hematological complications, and bone disease. Cardiac and pulmonary complications are rare. Type I GD adult patients have elevated risk of malignancies, Parkinson’s disease or Parkinsonism. Neuropathic forms of GD are rare and clinically ranging from lethal perinatal form to very mild form limited to abnormalities of horizontal ocular saccades. Diagnosis of acid β-glucosylceramidase relies on enzyme activity in peripheral blood leukocytes or skin fibroblasts and/or identification of GBA mutations. Enzyme replacement therapy is an effective treatment for non-neuropathic GD. Substrate inhibitor is the alternative therapy for some patients with GD is miglustat, iminosugar inhibitor of glucocerebroside synthase. Full article
Back to TopTop