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Abstract: Parkinson’s disease (PD) is a neurodegenerative disorder caused by the progressive
loss of dopaminergic (DAergic) neurons in the substantia nigra and the intraneuronal presence
of Lewy bodies (LBs), composed of aggregates of phosphorylated alpha-synuclein at residue Ser129

(p-Ser129α-Syn). Unfortunately, no curative treatment is available yet. To aggravate matters further,
the etiopathogenesis of the disorder is still unresolved. However, the neurotoxin rotenone (ROT) has
been implicated in PD. Therefore, it has been widely used to understand the molecular mechanism of
neuronal cell death. In the present investigation, we show that ROT induces two convergent pathways
in HEK-293 cells. First, ROT generates H2O2, which, in turn, either oxidizes the stress sensor protein
DJ-Cys106-SH into DJ-1Cys106SO3 or induces the phosphorylation of the protein LRRK2 kinase at
residue Ser395 (p-Ser395 LRRK2). Once active, the kinase phosphorylates α-Syn (at Ser129), induces
the loss of mitochondrial membrane potential (∆Ψm), and triggers the production of cleaved caspase
3 (CC3), resulting in signs of apoptotic cell death. ROT also reduces glucocerebrosidase (GCase)
activity concomitant with the accumulation of lysosomes and autophagolysosomes reflected by the
increase in LC3-II (microtubule-associated protein 1A/1B-light chain 3-phosphatidylethanolamine
conjugate II) markers in HEK-293 cells. Second, the exposure of HEK-293 LRRK2 knockout (KO) cells
to ROT displays an almost-normal phenotype. Indeed, KO cells showed neither H2O2, DJ-1Cys106SO3,

p-Ser395 LRRK2, p-Ser129α-Syn, nor CC3 but displayed high ∆Ψm, reduced GCase activity, and the
accumulation of lysosomes and autophagolysosomes. Similar observations are obtained when HEK-
293 LRRK2 wild-type (WT) cells are exposed to the inhibitor GCase conduritol-β-epoxide (CBE).
Taken together, these observations imply that the combined development of LRRK2 inhibitors and
compounds for recovering GCase activity might be promising therapeutic agents for PD.

Keywords: autophagy; conduritol-β-epoxide; glucocerebrosidase; HEK-293; LRRK2; Parkinson’s; rotenone

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder characterized by motor symp-
toms such as bradykinesia, rigidity, resting tremor, and gait disturbance [1]. PD is mainly
caused by the progressive loss of dopaminergic (DAergic) neurons in the substantia nigra
and the intraneuronal presence of Lewy bodies (LBs), composed of aggregates of alpha-
synuclein (α-Syn) [2]. Although initially described in six subjects [3], PD has reached pan-
demic proportions [4]. Indeed, it is projected that 12 million people will suffer from the neu-
rologic disorder by 2040 [5], mainly affecting the population under 65 years of age [6]. Unfor-
tunately, no curative treatment is available yet. To further aggravate matters, the etiopatho-
genesis of the disorder is still unresolved. Despite this drawback, mitochondrial damage,
oxidative stress (OS), and alteration in the autophagy–lysosomal pathway (ALP) have been
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suggested to be important determinants in the development of PD [7–9]. Interestingly, neu-
rotoxins targeting mitochondrial complex I, such as MPTP [10,11] and rotenone (ROT) [12],
have been implicated in PD. Indeed, ROT is a naturally occurring organic heteropenta-
cyclic compound, chemically known as Benzopyrano(3,4-b) furo(2,3-h) (1) benzopyran-6
(6aH)-one, 1,2,12,12a-tetrahydro-2-a-isopropenyl-8,9-dimethoxy (PubChem CID 6758), and
is mainly found in the roots of the Derris [13,14] and Lonchocarpus [15] plant species. It is
used worldwide due to its broad-spectrum insecticidal, acaricidal, and pesticidal properties
(http://www.chm.bris.ac.uk/motm/rotenone/ accessed in June 2023). Importantly, ROT
induces the specific degeneration of DAergic neurons in vitro and in vivo [16], which in-
trinsically deteriorates in Parkinson’s disease (PD) [17]. ROT works as a strong inhibitor of
complex I of the mitochondrial respiratory chain [18] via the inhibition of electron transfer
from the iron–sulfur centers in complex I to ubiquinone, leading to the overproduction of
reactive oxygen species (ROS) such as superoxide anion radical (O2

−), which dismutates
into hydrogen peroxide (H2O2) [19]. Interestingly, genetic forms of PD affect different
mitochondria-associated proteins, such as leucine-rich repeat serine/threonine protein
kinase 2 (LRRK2), as well as autophagy–lysosomal proteins (e.g., α-Syn; glucosylcerami-
dase beta 1 (GBA1)), trigger mitochondrial alterations, OS, autophagy, and lysosomal
dysfunction (e.g., [20–22]). Nonetheless, how LRRK2, α-Syn, and GBA1 proteins work
alone or interact with each other during a loss of DAergic neurons is not yet clear [23].
Understanding their mechanism of action might be of therapeutic importance for PD.

LRRK2 (Online Mendelian Inheritance in Man (OMIM) #609007) is a large multido-
main protein (2527 amino acids and MW 286 kD), composed of a leucine-rich repeat (LRR)
domain, a kinase domain, among 5 other important domains (Uniprot protein accession
#Q5S007). Therefore, it is not a surprise that LRRK2 would be involved in several cel-
lular processes, including mitochondrial dysfunction, autophagy, OS signaling, and cell
death [24]. Recently, we have demonstrated that ROT, a widely used neurotoxin to model
PD [16,25], induces a significant increase in intracellular reactive oxygen species (ROS) such
as H2O2, triggers the phosphorylation of LRRK2 (at residue Ser935) and c-JUN (at residue
Ser63/Ser73), enhances the expression of the proteins TP53 and p53 upregulated modulator
of apoptosis (PUMA), produces cleaved caspase 3 (CC3), induces DNA fragmentation, and
decreases mitochondrial membrane potential (∆Ψm) in nerve-like cells (NLCs) compared
to untreated cells [26]. Importantly, the LRRK2 kinase inhibitor PF-06447475 protects NLCs
against ROT-induced toxic effects. The inhibitor not only blocks the p-S935 LRRK2 kinase
but also completely abolishes ROS and significantly reverses all ROT-induced apoptosis
signaling and OS-associated markers to comparable control values. Taken together, these
observations support the hypothesis that LRRK2 functions as a pro-apoptotic kinase under
OS [26]. However, how LRRK2 would affect α-Syn in our experimental paradigm has not
been determined. Some researchers have suggested that LRRK2 might directly or indirectly
interact with α-Syn [27]. Of note, it has been shown that α-Syn aggregation is enhanced by
LRRK2 in human neuroblastoma SH-SY5Y cells [28]. Therefore, whether LRRK2-induced
apoptosis occurs dependently or independently of α-Syn is still an open question.

Several studies have demonstrated that PD-associated genes related to the autophagy–
lysosomal pathway, such as LRRK2 and GBA1, among others, are involved in the dysfunc-
tion of the cellular clearance system in PD pathogenesis. Indeed, the failure of cellular
protein degradation systems plays a major role in α-Syn aggregation [29]. Of importance,
defects in lysosomal function result in lysosomal storage disorders (LSDs) involving a
neurologic component [30,31]. One of the most common LSDs is Gaucher disease (GD,
OMIM #230800) [32]. GD results from a biallelic loss of function of the lysosomal en-
zyme β-glucocerebrosidase (GCase), encoded by the GBA1 gene, which is localized in
chromosome 1q21 (https://www.genecards.org/; accessed in June 2023). Biochemically,
GCase hydrolyzes the substrate glucosylceramide (GlcCer) by cleaving a glucose moiety
off the molecule, creating the products glucose (Glc) and ceramide (Cer). Therefore, the
intracellular accumulation of GlcCer is responsible for the characteristic “Gaucher cells”,
which are of mononuclear phagocyte origin [33]. Interestingly, mutations in GBA1 are
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among the most known genetic risk factors for the development of PD [34]. Indeed, there is
accumulating evidence that a buildup of GlcCer due to the dysfunction of GCase can also
increase the accumulation of α-Syn [35,36]. Furthermore, LRRK2 kinase has been suggested
to regulate GCase levels and enzymatic activity differently depending on the cell type in
PD [37]. Since the GBA1 pathway might be convergent to LRRK2 and α-Syn, GBA1 has
become a potential therapeutic target to slow PD [38]. However, the mechanism by which
LRRK2 and α-Syn are associated with dysfunctional GCase, autophagy, and cell death has
not yet been fully established.

Autophagy is a complex process that involves the fusion of autophagosomes and
lysosomes to form the autophagolysosome to remove superfluous and damaged organelles
(e.g., dysfunctional mitochondria) and cytosolic proteins [39]. Autophagy appears as a
protective mechanism in response to stress [40,41], and it may or may not be associated
with cell death, depending on the intensity of the insult. Such dynamic flux in the forma-
tion of the autophagy–lysosome can be modulated by inhibitors such as bafilomycin A1
(BafA1), which inhibits vacuolar-type H+-ATPase [42], and chloroquine (CQ), which blocks
autophagosome fusion with the lysosome and slows down lysosomal acidification [43,44].
Interestingly, it has been reported that ROT blocks autophagic flux prior to inducing cell
death [45]. However, it is not entirely clear if LRRK2 kinase is involved in such altered
processes in cells under OS. Moreover, the inhibition of LRRK2 kinase activity results in
increased GCase activity in DAergic neurons derived from PD patients with either LRRK2
or GBA1 mutations [46]. Yet, it is not yet known whether null LRRK2 may have a similar
effect on HEK-293 cells exposed to ROT.

To acquire an understanding of these issues, the present investigation aimed to investi-
gate the effect of the inhibitor of GCase conduritol-β-epoxide (CBE) and ROT on HEK-293
related to LRRK2, α-Syn, autophagy, and apoptosis. To achieve this aim, HEK-293 LRRK2
WT cells and HEK-293 LRRK2 knockout (KO) cells were used. By means of different tech-
niques of biochemistry, immunofluorescence microscopy, and flow cytometry, we found
that CBE and ROT inhibited the enzymatic activity of GCase to a similar extent. Interest-
ingly, ROT and CBE induced a high accumulation of lysosomes and autophagolysosomes
in HEK-293 cells, but ROT diminished ∆Ψm, induced p-Ser935 LRRK2 concomitantly with
p-Ser129α-Syn, and induced DJ-1Cys106SO3 and CC3 in those cells. On the other hand, ROT
inhibited GCase in HEK-293 LRRK2 KO cells. Consequently, it induced a high accumu-
lation of lysosomes and autophagolysosomes but was ineffective in triggering damage
to ∆Ψm, p-Ser395 LRRK2p-Ser129α-Syn, DJ-1Cys106SO3, and CC3. Taken together, these
results suggest that ROT decreases the activity of GCase, induces mitochondrial damage,
phosphorylates LRRK2, which, in turn, phosphorylates α-Syn, triggers the concomitant
accumulation of lysosomes and autophagolysosomes, and causes signs of OS and apoptosis
in HEK-293 cells. Of note, ROT impairment of ALP and the induction of apoptosis occur
in an LRRK2-independent and LRRK2-dependent fashion, respectively, supporting the
idea that LRRK2 is a pro-apoptotic kinase in cells under OS stimuli. Therefore, LRRK2 has
become a therapeutic target for the treatment of PD.

2. Results
2.1. Rotenone (ROT) Inhibits Glucocerebrosidase (GCase) Activity by Mimicking the Inhibitor
Conduritol-β-Epoxide (CBE) in HEK-293 Cells

CBE is a cyclitol epoxide that covalently and irreversibly reacts with the catalytic
nucleophile of the lysosomal enzyme GCase and, thus, irreversibly inactivates the enzyme.
We, therefore, first evaluated whether CBE inhibits GCase in HEK-293 cells. Effectively,
Figure 1 shows that the enzymatic activity of GCase decreased by −62% and −87% in
HEK-293 exposed to (10 µM) and (50 µM) CBE, respectively, compared to untreated cells
(Figure 1A). An in silico molecular docking simulation analysis [47] revealed that CBE
binds to a pocket in GCase (Protein Data Bank, PDB #6T13, Vina score: −6.0) interacting
with at least 15 residues (Table 1), wherein the residue Glu340 of the protein GCase is the cat-
alytic nucleophile critical for covalent binding with the inhibitor (Figure 1B and inset) [48].
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Interestingly, HEK-293 cells exposed to (10 µM) ROT or (50 µM) ROT for 6 h diminished the
catalytic activity of GCase by −48% and −67%, respectively, compared to untreated cells
(Figure 1C). Like CBE, molecular docking analysis predicted that ROT would bind to similar
amino acid residue pockets in GCase with 94% (14/15) amino acid similarity, with a Vina
score of −9.2 (Table 1), including residue Glu340 (Figure 1D and inset). Given that (10 µM)
ROT significantly reduced GCase, we selected this concentration for further experiments.
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in HEK-293 cells exposed to CBE (0, 10, and 50 µM). (B) Representative CB-Dock2 3D images showing
the molecular docking of GCase (PDB: 6T13) with CBE (PubChem CID 119054). (C) Analysis of
GCase activity in HEK-293 cells exposed to ROT (0, 10, and 50 µM). (D) Representative CB-Dock2 3D
images showing the molecular docking of GCase (PDB: 6T13) with ROT (PubChem CID 6758). The
data are expressed as mean ± SD; * p < 0.05; ** p < 0.01; ns—not significant. Bars represent 1 out of
3 independent experiments (n = 3).

Table 1. In silico molecular docking analysis of conduritol-β-epoxide (CBE), rotenone (ROT), and
glucocerebrosidase (GCase).

Submitted
Protein *

Submitted
Ligand **

Vina
Score ***

Cavity
Volume (Å3)

Center
(x, y, z)

Docking Size
(x, y, z) Contact Residue

GCase
(6T13)

CBE
(conformer 3D
CID 9989541)

−6.0 3950 13, 10, −2 16, 34, 33

Chain A: Asp127 Phe128

Trp179 Asn234 Glu235 Tyr244

Phe246 Gln284 Tyr313 Glu340

Cys342 Ser345 Trp381

Asn396 Val398

ROT
(conformer 3D

CID 6758)
−9.2 3950 13, 10, −2 22, 34, 33

Chain A: Asp127 Phe128

Trp179 Asn234 Glu235 Ser237

Ala238 Leu241 Tyr244 Pro245

Phe246 Asp283 Gln284 Tyr313

Leu314 Glu340 Cys342 Ser345

Trp381 Asn396

* According to RCSB Protein Data Bank (https://www.rcsb.org/; accessed in June 2023). ** According to PubChem
database (https://pubchem.ncbi.nlm.nih.gov/; accessed in June 2023). *** According to CB-dock2: An accurate
protein–ligand blind docking tool (https://cadd.labshare.cn/cb-dock2/php/index.php; accessed in June 2023).
Bold letters represent similar amino acid residues in the catalytic pocket of the protein that interacts with CBE
and ROT.

2.2. Rotenone (ROT) and Conduritol-β-Epoxide (CBE) Induce Accumulation of Lysosomes but
ROT Affects the Mitochondrial Membrane Potential (∆Ψm) Only in HEK-293 Cells

Given that GCase is localized in lysosomes [49], we wanted to evaluate the effect of
ROT and CBE on lysosomes and mitochondrial functionality in HEK-293 cells. To achieve
this aim, cells were exposed to CBE (10 and 50 µM) or ROT (10 µM) for 24 h. Since Lyso-
Tracker Deep Green is a cell-permeable, non-fixable, green, fluorescent dye that stains
acidic compartments within a cell, we were able to unveil the cellular granular content of
the cell, i.e., lysosomes, which are acidic cellular compartments in nature. Flow cytometry
analysis shows that CBE (10 and 50 µM) and ROT (10 µM) induced the accumulation of
lysosomes by +77% (Figure 2B), +100% (Figure 2C), and +127% (Figure 2D), respectively,
compared to untreated HEK-293 cells (Figure 2A,E). However, while CBE did not perturb
∆Ψm at any concentration tested (Figure 2F–H), ROT reduced ∆Ψm by −20% in HEK-293
cells (Figure 2I,J). Similar data were obtained by fluorescence microscopy (MF) analysis
(Figure 2K–P). Based on these observations, and because there was no statistically sig-
nificant difference between 10 and 50 µM CBE (Figure 2A), we selected 10 µM CBE for
further experiments.

https://www.rcsb.org/
https://pubchem.ncbi.nlm.nih.gov/
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treated with (10 µM) CBE (B), (50 µM) CBE (C), or (10 µM) ROT (D). Quantitative analysis of SSC-
A/LysoTracker-positive cells (E). Representative density 2D plots showing SSC-A/MitoTracker anal-
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(I). Quantitative analysis of SSC-A/MitoTracker-positive cells (J). The formation of acidic vacuoles 

Figure 2. Rotenone (ROT) and conduritol-β-epoxide (CBE) induce accumulation of lysosomes, but
rotenone diminishes mitochondrial membrane potential (∆Ψm) only in HEK-293 cells. Represen-
tative density 2D plots showing SSC-A/LysoTracker analysis (lysosomes) in untreated cells (A) or
treated with (10 µM) CBE (B), (50 µM) CBE (C), or (10 µM) ROT (D). Quantitative analysis of SSC-
A/LysoTracker-positive cells (E). Representative density 2D plots showing SSC-A/MitoTracker anal-
ysis of untreated cells (F) or cells treated with (10 µM) CBE (G), (50 µM) CBE (H), or (10 µM) ROT (I).
Quantitative analysis of SSC-A/MitoTracker-positive cells (J). The formation of acidic vacuoles was
determined as described in Section 4. The percentage is the number of events for positive staining for
acidic vacuoles in the upper-left quadrants (A–D,F–I), and color contrast indicates cell population
density: dark blue < light blue < green < yellow < red. Representative fluorescence images showing
Hoechst (K′–N′), LysoTracker (K′′–N′′), MitoTracker (K′′′–N′′′), and merge (K–N) of untreated HEK-293
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cells (K) or cells treated with (10 µM) CBE (L), (50 µM) CBE (M), or (10 µM) ROT (N). Quantitative
analysis of LysoTracker-stained area (O). Quantitative analysis of MitoTracker mean fluorescence
intensity (P). The data are expressed as mean ± SD; * p < 0.05; ** p < 0.01; *** p < 0.001; ns—not
significant. The smooth dot plots, bars, and photomicrographs represent 1 out of 3 independent
experiments (n = 3). Image magnification, 20×.

2.3. Rotenone (ROT) and Conduritol-β-Epoxide (CBE) Induce Both the Accumulation of
Lysosomes and an Increase in Autophagolysosomes in HEK-293 Cells

Next, we investigated whether ROT and CBE affect the autophagolysosomal flux in HEK-
293 cells. Figure 3 shows that both CBE (10 µM) and ROT (10 µM) induced not only an increase
in the accumulation of lysosomes by +80% (Figure 3B) and +127% (Figure 3C), respectively,
when compared to untreated cells (Figure 3A,F), but also a significant increase in autophagy–
lysosome vacuoles by +138% (Figure 3H) and +252% (Figure 3I), respectively, compared to
the control (Figure 3G,L). As mediators of the autophagy flux, HEK-263 cells were exposed
to the classic inhibitors of autophagy, chloroquine (CQ) and bafilomycin A1 (BAF), which
block the binding of autophagosomes to lysosomes by altering the acidic environment of
lysosomes [50]. As expected, CQ (Figure 3D) and BAF (Figure 3E) increased the accumulation
of lysosomes by +140% and +67%, respectively, compared to untreated cells (Figure 3A,F), but
significantly reduced the formation of autophagolysosomes by −14% (Figure 3J,L) and −52%
(Figure 3K,L), respectively. Additionally, we also detected the accumulation of the autophagy
marker microtubule-associated protein-light chain 3-II (LC3-II), which is a cytosolic form of
LC3 (LC3-I) conjugated to phosphatidylethanolamine to form LC3-phosphatidylethanolamine
conjugate (LC3-II) and recruited to autophagosomal membranes [51]. As shown in Figure 3,
CBE (Figure 3N), ROT (Figure 3O), CQ (Figure 3P), and BAF (Figure 3Q) induced a statistically
significant increase in LC3-II compared to untreated cells (Figure 3M,R). Of note, ROT-induced
LC3-II accumulation was equivalent to that induced by CQ, whereas CBE-induced LC3-II
accumulation was comparable to BAF (Figure 3R).
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(lysosomes) in untreated cells (A) or cells treated with (10 µM) CBE (B), (10 µM) ROT (C), (10 µM)
chloroquine (CQ) (D), or (10 nM) bafilomycin A1 (BAF) (E). Quantitative analysis of SSC-
A/LysoTracker-positive cells (F). Representative density 2D plots showing the autophagy–lysosome
acidification of untreated cells (G) or cells treated with (10 µM) CBE (H), (10 µM) ROT (I),
(10 µM) chloroquine (CQ) (J), or (10 nM) bafilomycin A1 (BAF) (K). Quantitative analysis of
autophagy–lysosome-acidification-positive cells (L). The formation of acidic vacuoles was deter-
mined as described in Section 4. The percentage is the number of events for positive staining for
acidic vacuoles in the upper-left quadrants (A–E), and color contrast indicates cell population density:
dark blue < light blue < green < yellow < red. Representative immunofluorescence images showing
LC3-II reactivity in untreated cells (M) or cells treated with (10 µM) CBE (N), (10 µM) ROT (O),
(10 µM) chloroquine (CQ) (P), or (10 nM) bafilomycin A1 (BAF) (Q). Quantitative analysis of LC3-II
mean fluorescence intensity (R). The data are expressed as mean ± SD; *** p < 0.001; ns—not sig-
nificant. The dot plots, bars, histograms, and photomicrographs represent 1 out of 3 independent
experiments (n = 3). Image magnification, 200×.

2.4. Rotenone (ROT) but Not Conduritol-β-Epoxide (CBE) Induces the Oxidation of Stress Sensor
Protein DJ-1 and Cleaved Caspase 3 (CC3) in HEK-293 Cells

It is known that the oxidation of the stress sensor protein DJ-1Cys106-SH (sulfhydryl
group) into DJ-1Cys106-SO3 (sulfonic acid) is a specific target of the non-radical ROS
H2O2 [52]. We, thus, determined whether CBE or ROT can generate H2O2 and induce
the generation of CC3. Therefore, HEK-293 cells were exposed to CBE (10 µM) or ROT
(10 µM) for 24 h. As shown in Figure 4A, while CBE oxidized DJ-1 at a similar percentage
as untreated cells, ROT induced a statistically significant increase in oxidized DJ-1 (+440%)
compared to untreated cells. Similar observations were found by IMF analysis (Figure 4B–E,
48–f.i. oxDJ-1). On the other hand, ROT induced a statistically significant increase in
CC3 (+500%), whereas the percentage of CC3 induced by CBE remained at basal levels
comparable to untreated HEK-293 cells (Figure 4F). These observations were confirmed by
IMF analysis (Figure 4G–J, 83–f.i. CC3+).
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showing the oxDJ-1(Cys106)-positive population in untreated cells (blue curve) or cells treated
with (10 µM) CBE (red) or (10 µM) ROT (orange). Representative fluorescence images showing
Hoechst (B′–D′), oxDJ-1(Cys106)-positive (B′′–D′′), and merge (B–D) in untreated HEK-293 cells (B) or
cells treated with (10 µM) of CBE (C) or (10 µM) ROT (D). Quantitative analysis of ox(Cys106)
DJ-1 mean fluorescence intensity (E). Representative flow cytometry histogram analysis showing the
CC3-positive population in untreated (blue), (10 µM) CBE (red)-, or (10 µM) ROT (orange)-treated
cells (F). Representative fluorescence images showing Hoechst (G′–I′), CC3-positive (G′′–I′′), and
merge (G–I) of untreated HEK-293 cells (G) or cells treated with (10 µM) CBE (H) or (10 µM) ROT (I).
Quantitative analysis of CC3 mean fluorescence intensity (J). The data are expressed as mean ± SD;
* p < 0.05; *** p < 0.001; ns—not significant. The histograms, bars, and photomicrographs represent
1 out of 3 independent experiments (n = 3). Image magnification, 20×. White line (area) represents
magnification of broken line (area).

2.5. Rotenone (ROT) but Not Conduritol-β-Epoxide (CBE) Induces Phosphorylation of
Alpha-synuclein (α-Syn) and LRRK2 Kinase in HEK-293 Cells

We wanted to assess whether ROT and CBE trigger the phosphorylation of α-Syn
concurrently with LRKK2 in HEK-293 cells. As shown in Figure 5, ROT but not CBE
induced a statistically significant increase in p-Ser129α-Syn, as detected by flow cytometry
(Figure 5A, +580%), and IMF (Figure 5B–E, 44.5-f.i.). Previously, it was shown that ROT
induced the phosphorylation of LRRK2 in nerve-like cells [26]. Therefore, we evaluated
whether ROT and CBE cause p-Ser935 LRKK2 in HEK-293 cells. Figure 5F shows that ROT
induced p-Ser935 LRKK2 by +1580% in HEK-293 cells, as evaluated by flow cytometry. In
contrast, CBE was unable to induce any effect on LRRK2 (Figure 5F). Similar data were
documented by IMF (Figure 5G–J, 4.4–f.i. ROT > p-S935 LRRK2).
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Figure 5. Rotenone (ROT) but not conduritol-β-epoxide (CBE) induces α-synuclein (α-Syn) phospho-
rylation at residue Ser129 and LRRK2 kinase in HEK-293 cells. (A) Representative flow cytometry
histogram analysis showing the pSer129α-Syn-positive population in untreated cells (blue) or cells
treated with (10 µM) CBE (red) or (10 µM) ROT (orange). Representative fluorescence images
showing Hoechst (B′–D′), pSer129α-Syn-positive (B′′–D′′), and merge (B–D) in untreated HEK-
293 cells (B) or cells treated with (10 µM) CBE (C) or (10 µM) ROT (D). Quantitative analysis of
pSer129 α-Syn mean fluorescence intensity (E). Representative flow cytometry histogram analysis
showing the pS935 LRRK2-positive population untreated (blue) or treated with (10 µM) CBE (red)
or (10 µM) ROT (orange) (F). Representative fluorescence images showing Hoechst (G′–I′), pS935

LRRK2-positive (G′′–I′′), and merge (G–I) of untreated HEK-293 cells (I) or cells treated with (10 µM)
CBE (H) or (10 µM) ROT (I). Quantitative analysis of pS935 LRRK2 mean fluorescence intensity (J).
The data are expressed as mean ± SD; *** p < 0.001; ns—not significant. The histograms, dot graphs,
and photomicrographs represent 1 out of 3 independent experiments (n = 3). Image magnification, 20×.
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2.6. Rotenone (ROT) Does Not Induce the Phosphorylation of LRRK Kinase in HEK-293 LRRK2
Knockout (KO) Cells

The above finding that ROT induced the phosphorylation of LRRK2 prompted us
to expand our observation by inquiring whether ROT could induce p-Ser395 LRRK2 in
HEK-293 LRRK2 KO cells. We, therefore, first confirmed the protein expression status
of LRRK2 in both wild-type (WT) HEK-293 and HEK-293 LRRK2 KO cells. Figure 6
shows the expression of LRRK2 in WT HEK-293 cells, but its expression was almost
completely reduced in HEK-293 LRRK2 KO cells, according to flow cytometry analysis
(−90%, Figure 6A). When both WT and KO cells were exposed to ROT, it was observed that
the neurotoxin induced p-Ser395 LRRK2 by +820% in WT HEK-293 cells (Figure 6B,C), but
this effect was drastically reduced by −96% in HEK-293 LRRK2 KO cells when compared
to treated WT cells (Figure 6B,C). Similar observations were obtained by IMF analysis
(Figure 6E–H).
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LRRK2 mean fluorescence intensity (D). Representative fluorescence images showing Hoechst (E′–H′),
pS935 LRRK2-positive (E′′–H′′), and merge (E–H) in HEK-293 LRRK2 WT cells (E,F) and KO
cells (G,H) untreated (E,G) or treated with (10 µM) of ROT (F,H). Analysis of GCase activity in HEK-
293 LRRK2 WT and KO cells without or with (10 µM) ROT (I). The data are expressed as mean ± SD;
** p < 0.01; *** p < 0.001. The histograms, bars, and photomicrographs represent 1 out of 3 independent
experiments (n = 3). Image magnification, 20×.

2.7. ROT Inhibits the Enzymatic Activity of GCase Equally in Both WT and HEK-293 KO Cells

In parallel experiments, we wanted to determine whether ROT affects the enzymatic
activity of GCase in KO cells. To achieve this end, WT and HEK-293 LRRK2 KO cells were
first exposed to ROT for 24 h and then quantified for the percentage of enzymatic activity.
As shown in Figure 6I, ROT inhibited the activity of GCase to a similar extent in WT and
HEK-293 LRRK2 KO cells.

2.8. ROT Induces the Accumulation of Lysosomes and Reduces Mitochondrial Potential in
HEK-293 KO Cells

Then, we wondered whether ROT could alter the lysosomal system and damage ∆Ψm
in KO cells. Flow cytometry analysis revealed that untreated WT and KO cells showed no
statistical difference in the percentages of lysosomal accumulation (Figure 7A,C,E) or the
loss of ∆Ψm (Figure 7F,G). In contrast, ROT induced not only a significant accumulation of
lysosomes in both WT HEK-293 cells (Figure 7B,E) and KO cells (Figure 7D,E), but induced
a significant decrease in mitochondrial functionality reflected by low ∆Ψm in WT only
(Figure 7F,G).
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vacuoles was determined as described in Section 4. The percentage is the number of events for
positive staining for acidic vacuoles in the upper-left quadrants (A–D), and color contrast indicates
cell population density: dark blue < light blue < green < yellow < red. Representative flow cytome-
try histograms showing MitoTracker analysis of untreated or treated with (10 µM) ROT HEK-293
LRRK2 WT and KO cells. (F). Quantitative analysis of MitoTracker-depleted cells (G). Representative
fluorescence images showing Hoechst (H′–K′), LysoTracker (H′′–K′′), MitoTracker (H′′′–K′′′), and
merge (H–K) HEK-293 LRRK2 WT and KO cells untreated (H,J) or treated (I,K) with (10 µM) ROT.
Quantitative analysis of LysoTracker-stained area (L). Quantitative analysis of MitoTracker mean
fluorescence intensity (M). The data are expressed as mean ± SD; * p < 0.05; ** p < 0.01; *** p < 0.001;
ns—not significant. The smooth dot plots, bars, histograms, and photomicrographs represent 1 out of
3 independent experiments (n = 3). Image magnification, 20×.

2.9. Rotenone (ROT) Induces An Increase in Autophagosomes Independently of LRRK2

To determine whether ROT affects the autophagosome flux in HEK-293 LRRK2 KO
cells, WT and KO cells were exposed to ROT for 24 h. As shown in Figure 8, ROT pro-
voked the accumulation of lysosomes (Figure 8B) and increased autophagolysosomes
(Figure 8G) in both HEK-293 LRRK2 WT and KO cells (Figure 8E,J) compared to untreated
cells (Figure 8A,E,F,J). Similarly, ROT induced the accumulation of LC3-II in both WT and
KO cells (Figure 8L,P,S) compared to untreated cells (Figure 8K,O,S). As expected, CQ
and BAF induced the accumulation of lysosomes (Figure 8C–E), a significant reduction in
autophagosome and lysosome formation (Figure 8H–J), and induced the accumulation of
LC3-II (Figure 8M,N,Q–S), irrespective of LRRK2 gene status in HEK-293 cells compared to
untreated cells (Figure 8E,J,S).
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treated with 10 µM ROT (B), (10 µM) chloroquine (CQ) (C), or (10 nM) bafilomycin A1 (BAF) (D).
Quantitative analysis of SSC-A/LysoTracker-positive cells (E). The formation of acidic vacuoles
was determined as described in Section 4. The percentage is the number of events for positive
staining for acidic vacuoles in the upper-left quadrants (A–D), and color indicates cell population
density of HEK-293 LRRK2 WT (blue) and HEK-293 LRRK2 KO (red) cells. Representative flow
cytometry histograms showing the autophagy–lysosome acidification of untreated HEK-293 LRRK2
WT or KO cells (F) or cells treated with 10 µM ROT (G), (10 µM) chloroquine (CQ) (H), or (10 nM)
bafilomycin A1 (BAF) (I). Quantitative analysis of autophagy–lysosome-acidification-positive cells (J).
The percentage is the number of events for positive staining for acidic vacuoles, and color indicates
cell population of HEK-293 LRRK2 WT (red) and HEK-293 LRRK2 KO (orange) cells. Representative
immunofluorescence images showing LC3-II accumulation in HEK-293 LRRK2 WT (K–N) and KO
cells (O–R) untreated (K,O) or treated with (10 µM) ROT (L,P), (10 µM) chloroquine (CQ) (M,Q), or
(10 nM) bafilomycin A1 (BAF) (N,R). Quantitative analysis of the accumulation of LC3-II as mean
fluorescence intensity (S). The data are expressed as mean ± SD; ns—not significant. The contour
diagrams, histograms, bars, dot graphs, and photomicrographs represent 1 out of 3 independent
experiments (n = 3). Image magnification, 200×.

2.10. ROT Neither Induces the Phosphorylation of α-Syn, the Oxidation of DJ-1, Nor the
Activation of Caspase 3 (CC3) in HEK-293 LRRK2 KO Cells

We wanted to determine the effect of ROT in KO cells regarding α-Syn, DJ-1, and
CC3. As shown in Figure 9, ROT was highly efficient, inducing p-Ser129α-Syn by +1000%
(Figure 9A,B), oxidizing DJ-1 by +2500% (Figure 9H,I), and the production of CC3 by
+1800% (Figure 9O,P) in WT HEK-293 cells. In sharp contrast, ROT was strongly ineffective
in triggering the phosphorylation of α-Syn (Figure 9A,B), oxDJ-1 (Figure 9H,I), and CC3
(Figure 9O,P) in HEK-293 LRRK2 KO cells. Similar observations were found by IMF
analysis (Figure 9C–G,J–N,Q–U).
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Figure 9. Rotenone (ROT) neither induces phosphorylation of α-synuclein (α-Syn), oxidation of
DJ-1 protein at residue Cys106 nor generates cleaved caspase 3 (CC3). Representative flow cytometry
histogram analysis showing the α-synuclein (α-Syn)-positive population in HEK-293 LRRK2 WT (blue)
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or KO cells (red) (A). Quantitative analysis of α-Syn (B). Representative fluorescence images show-
ing Hoechst (C′–F′), α-Syn (C′′–F′′), and merge (C–F) HEK-293 LRRK2 WT and KO cells un-
treated (C,E) or treated (D,F) with (10 µM) of ROT. Quantitative analysis of α-Syn-stained area (G).
Representative flow cytometry histogram analysis showing the oxDJ-1Cys106-positive population in
HEK-293 LRRK2 WT (blue) or KO cells (red) (H). Quantitative analysis of oxDJ-1Cys106 (I). Repre-
sentative fluorescence images showing Hoechst (J′–M′), oxDJ-1Cys106 (J′′–M′′), and merge (J–M)
HEK-293 LRRK2 WT and KO cells untreated (J,L) or treated (K,M) with (10 µM) ROT. Quantita-
tive analysis of oxDJ-1Cys106-stained area (N). Representative flow cytometry histogram analysis
showing the cleaved caspase 3 (CC3)-positive cell population in HEK-293 LRRK2 WT (blue) or
KO cells (red) (O). Quantitative analysis of CC3 (P). Representative fluorescence images showing
Hoechst (Q′–T′), oxDJ-1Cys106 (Q′′–T′′), and merge (Q–T) HEK-293 LRRK2 WT and KO cells un-
treated (Q,S) or treated (R,T) with (10 µM) ROT. Quantitative analysis of CC3-stained area (U). The
data are expressed as mean ± SD; *** p < 0.001; ns—not significant. The smooth dot plots, bars,
histograms, and photomicrographs represent 1 out of 3 independent experiments (n = 3). Image
magnification, 20×. White line (area) represents magnification of broken line (area).

3. Discussion

We confirm that CBE significantly reduced the enzymatic activity of GCase (e.g., by
−87% at 50 µM) via binding to Glu340 of the enzyme, as verified by in silico molecular
docking analysis [48,53]. Therefore, a deficiency in GCase activity might lead to diminished
performance of the enzyme in the lysosome and the disruption of lysosomal targeting.
Interestingly, CBE induces the accumulation of lysosomes to a similar extent as the lyso-
some inhibitors, CQ and BAF, in HEK-293 cells. These observations suggest that CBE is an
effective compound to dysregulate the autophagy pathway [54]. Under the present experi-
mental conditions, we found that CBE causes neither mitochondrial potential alteration,
triggers OS, as reflected by the non-oxidized sensor protein DJ-1Cys106-SOH, impairs ∆Ψm,
induces α-Syn and LRRK2 phosphorylation, nor produces CC3 in HEK-293 cells. However,
we do not discard the possibility that CBE under prolonged incubation might reverse the
fate of these cellular proteins and mitochondria [55]. Therefore, we were able to separate
malfunctioning autophagy processes (i.e., lysosome from autophagosome fusion) from OS
and apoptosis. Surprisingly, ROT diminishes the activity of GCase (by −48% at 10 µM
ROT), according to the enzymatic GCase test, most probably through its binding to the
critical catalytic residue Glu340, as predicted by molecular docking analysis. Accordingly,
ROT interacts with 14 out of 15 residues similar (94% similarity) to the ones reported for
CBE in the catalytic pocket of GCase. Although ROT displays a much more negative Vina
score, which is indicative of a strong binding affinity (e.g., −9.2 ROT versus −6.0 CBE), CBE
is much more specific towards GCase than ROT, according to the biochemical reduction
in GCase activity. Despite this drawback, ROT proves to be highly effective, provoking,
in a simultaneous fashion, a significant increase in the oxidation of DJ-1Cys-SH into DJ-
1Cys106SO3, CC3, the phosphorylation of α-Syn and LRKK2 kinase, the accumulation
of both lysosomes and autophagolysosomes, and a significant decrease in ∆Ψm. These
data imply that ROT triggers (i) the accumulation of lysosomes and autophagolysosomes,
(ii) mitochondrial-dependent OS damage, and (iii) apoptosis in HEK-293 cells.

However, how does ROT link these three processes? Our findings suggest that ROT
triggers two alternative and complementary mechanisms, involving the interaction be-
tween ROT and GCase and ROT and mitochondrial complex I, which eventually converge
on apoptosis. Mechanistically, ROT functions as a strong inhibitor of complex I of the mito-
chondrial respiratory chain [18] via the inhibition of electron transfer from the iron–sulfur
centers in complex I to ubiquinone, leading to a blockade of the IQ site [56], and an over-
reduction of complex I causes electrons to leak and produce ROS superoxide anion radical
(O2

−). The O2
− radical can dismutase into non-radical reactive H2O2 [19], which, in turn,

via signaling mechanisms [57,58], oxidizes the stress sensor protein DJ-1, leading to the
overproduction of DJ-1Cys106SO3 [52]. Interestingly, oxidized DJ-1 has been proposed
as a possible biomarker of PD [59,60]. Alternatively, H2O2 might activate LRRK2 kinase



Int. J. Mol. Sci. 2023, 24, 10589 16 of 26

activity by directly enhancing its autophosphorylation, e.g., at Tyr1967 [61], Ser2032, and
Tyr2035 [62,63], or indirectly, via the phosphorylation of Ser910 and Ser935 by the inhibition
of the nuclear factor-κB (IκB) kinase (IKK) complex [64]. Of note, we found p-Ser935 LRRK2-
positive cells in HEK-293 cells exposed to ROT. Interestingly, it has been found that H2O2
increases LRRK2 kinase activity and enhances LRRK2 cell toxicity in HEK-293T cultured
cells, mouse primary cortical neuronal cultures [65], and nerve-like cells [26]. Therefore,
phosphorylated LRRK2 kinase might directly or indirectly damage mitochondria and
trigger the activation of several cell-death-related proteins: (i) LRRK2 directly interacts
with dynamin-like protein 1 (DLP1), a key mitochondrial fission protein, increasing its
mitochondrial targeting and, thus, promoting mitochondrial fragmentation [66]; (ii) in-
creases the phosphorylation of peroxiredoxin 3, exacerbating OS-induced cell death [67];
(iii) phosphorylates both the activation of apoptosis-signal-regulating kinase 1 (ASK1) [68]
and MKK4/MAPK kinase [69], thereby triggering the JNK/c-JUN/PUMA death pathway;
and (iv) phosphorylates the pro-apoptotic transcription factor TP53 [70], thus triggering
downstream apoptosis signaling. Taken together, these observations suggest that phospho-
rylated LRRK2 might work as a pro-apoptotic kinase under OS stimuli [26,71]. Furthermore,
(v) LRRK2 kinase phosphorylates α-Syn at Ser129 [72], which is the major component of
pathological deposits in PD [73]. In line with this, we found p-Ser935 LRRK2 concomitant
with p-Ser129 α-Syn-positive cells in HEK-293 cells exposed to ROT. Although the exact
mechanism by which α-Syn causes dopamine neuronal loss is unclear, α-Syn has been
suggested to interfere with mitochondrial dynamics and promote mitochondrial fragmen-
tation through α-Syn- and DLP1-dependent mechanisms or by the direct binding of α-Syn
to mitochondria, occurring independently of proteins involved in mitochondrial dynam-
ics [66,74]. All these effects lead to an acceleration in the disposal of damaged mitochondria
through mitophagy [75] and/or the activation of the pro-apoptosis protein caspase 3 (this
work). Additionally, aggregated α-Syn might disrupt phagosome and lysosome fusion [76].
Indeed, α-Syn has been shown to disrupt intracellular trafficking and the lysosomal activity
of GCase [77]. Taken together, these observations suggest a self-propagating positive feed-
back process in which elevated levels of toxic α-Syn lead to a depletion of lysosomal GCase,
resulting in a progressive accumulation of GlcCer that promotes the additional formation of
toxic α-Syn [78]. However, we found that there is no p-Ser129α-Syn in CBE-exposed cells. In
agreement with others [79], this observation suggests that the chemical inhibition of GCase
activity per se is not sufficient to provoke the phosphorylation and accumulation of α-Syn,
and that the inhibition of GCase has to be accompanied by an additional stimulus, e.g.,
mitochondrial-derived OS, necessary to trigger the phosphorylation of α-Syn via LRRK2.
Indeed, α-Syn can directly inhibit lysosomal GCase activity [80,81], or it can indirectly
reduce GCase activity by inhibiting its transport from the endoplasmic reticulum to the
lysosomes [82]. As expected, however, CBE only increased intracellular granular content
and acidic particles, i.e., lysosomes, and augmented autophagy–lysosome fusion.

We hypothesized that HEK-293 cells carrying an LRRK2 null gene would revert to
normal the cytotoxic effects associated with ROT-induced mitochondrial damage, lysosomal
dysfunction, impaired autolysosome formation, OS marker DJ-1, and apoptosis marker
CC3 in HEK-293 LRRK2 KO cells. Effectively, we found that HEK-293 LRRK2 KO cells
exposed to ROT exhibit an accumulation of lysosomes and autophagolysosomes only.
Several observations support these findings. First, ROT reduced the levels of GCase
activity to similar percentage values in WT and KO cells. Second, no significant changes
in ∆Ψm were observed in LRRK2 WT and KO cells. Third, ROT induced almost neither
p-Ser129α-Syn, oxD-1Cys106SO3, nor CC3-positive cells in KO cells. Finally, ROT induced
a significant increase in the accumulation of lysosomes and autophagolysosomes in WT
and LRRK2 KO cells, as reflected by the accrual of the LC3-II marker. Taken together, these
results suggest that HEK-293 LRRK2 null cells become resilient to ROT-induced OS and
apoptosis, but the mutant cells still suffer from lysosomal and autophagy dysfunctionality,
which, under prolonged incubation, may lead to cell death. Interestingly, the pathologic
phenotype of HEK-293 LRRK2 KO cells exposed to ROT resembles the phenotype of WT



Int. J. Mol. Sci. 2023, 24, 10589 17 of 26

HEK-293 cells exposed to CBE only. Our findings suggest that the dysfunction of lysosomal
activity and/or the disturbance of autophagy–lysosome fusion is independent of LRRK2
kinase activity. Thus, these results support the notion that LRRK2 is a critical kinase in the
apoptosis pathway and α-Syn is a major mediator of LRRK2-induced toxicity. In contrast to
others [46,83], our findings suggest that LRRK2 kinase might not represent a direct regulator
of lysosomal GCase, lysosomal function, or autophagy–lysosome fusion. However, we do
not discard the possibility that LRRK2 kinase activity affects both the levels and catalytic
activity of GCase in a cell-type-specific manner [37]. Further investigation is, therefore,
needed to clarify this issue.

HEK-293 cells have been extensively used as an in vitro model system to study PD
due not only to their easy handling, reliable growth, and propensity for transfection but
also to their amenability to stringent quantitative assessments. Most notably, HEK-293
cells express the typical features of immature neurons, such as the neurofilament (NF)
subunits NF-L, NF-M, and NF-H, α-internexin, vimentin, and keratins 8 and 18, and also
reveal the expression of mRNAs specific for numerous other genes normally expressed
in neuronal lineage cells [84]. Therefore, HEK-293 might qualify as a human neuronal
cell line model. Indeed, HEK293 cells provide a reasonable approximation for addressing
numerous questions of basic biology in PD. Indeed, HEK-293 cells have demonstrated a
clear pro-apoptotic transcriptional response profile similar to that in neurons undergoing
apoptosis [85]. Moreover, HEK-293 cells display elements of the autophagy–lysosome
that are mechanistically similar to those expressed in DAergic neurons [50]. Interestingly,
since LRRK2 is a well-conserved evolutionary gene [86], HEK-293 cells have been used to
identify molecular substrates of this kinase [87] and to study LRRK2 mutations’ functional
analysis [88,89]. HEK-293 cells have also been used to demonstrate that, depending on
its concentration, the neurotoxin ROT can induce sublethal and/or lethal effects. For
instance, it has been shown that ROT (10 nM) might induce the cytosolic production of
H2O2 only in HEK-293 cells [90], whereas, at higher concentrations (e.g., 10 µM), it induces
autophagy and apoptosis ([45,91] and this work). Last but not least, HEK-293 cells have
been used to ectopically express not only the human dopamine transporter (hDAT) to
study, e.g., the toxic effect of MPTP [92], but also dopaminergic receptors, e.g., D1 [93]
and/or D5 [94]. Taken together, all these biological features suggest that HEK-293 cells
are a highly promising cellular model to reveal the molecular aspects, as described in the
present investigation, of the insidious degenerative disorder PD.

4. Materials and Methods
4.1. HEK-293 Cell Line

The HEK-293, a specific immortalized cell line derived from a human embryonic kid-
ney, was purchased from AcceGen Biotech (cat #ABC-TC0008, AcceGen Biotech, Fairfield,
NJ, USA), and the HEK-293 LRRK2 knockout (OK) cell line was kindly provided by Dr.
F. Martin (Genomic Medicine Department, GENYO, Centre for Genomics and Oncologi-
cal Research, Pfizer-University of Granada–Andalusian Regional Government, Granada,
Spain). Both HEK-293 and HEK-293 LRRK2 KO cells were cultured according to the suppli-
ers’ recommendations. Briefly, cells were grown in Dulbecco’s Modified Eagle’s Medium
(DMEM, cat #D0819, Sigma, Saint Louis, MO, USA), supplemented with fetal bovine serum
(FBS, cat #CVFSVF00-01, Eurobio Scientific, Paris, France) to a final concentration of 10% in
a humidified incubator at 37 ◦C, supplemented with 5% CO2. Growth media were replaced
every 2–3 days.

4.2. Analysis of Cells
4.2.1. Assay Protocol

HEK-293 cells were cultured in DMEM with low glucose plus 10% fetal bovine serum
(FBS) and left untreated or treated with the GCase inhibitor (10, 50 µM) CBE (cat #6090-95-5,
Santa Cruz Biotechnology, Dallas, TX, USA) or ROT (10, 50 µM; cat #150154, ICN Biomed,
Paris, France) for 6 h. For in vitro inhibition of autophagy, cultured cells were treated
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with bafilomycin A1 (10 nM, cat no. B1793, Sigma-Aldrich, Saint Louis, MO, USA) or
chloroquine (10 µM, cat no. C6628, Sigma-Aldrich, Saint Louis, MO, USA) for 24 h prior to
ROT exposure.

4.2.2. GCase Activity Assay

Cellular GCase activity was determined using the Beta-Glucosidase Assay Kit (cat
#ab272521, Abcam, Boston, MA, USA) according to the manufacturer’s recommendations.
Briefly, cell lysates were incubated with p-nitrophenyl-α-D-glucopyranoside, which is hy-
drolyzed specifically by β-glucosidase into a yellow-colored product (maximal absorbance
at 405 nm). The rate of the reaction was directly proportional to the enzyme activity.

4.2.3. Characterization of Lysosomal Complexity

To analyze lysosomal complexity, cells were incubated with the cell-permeable, non-
fixable, green, fluorescent dye LysoTracker Green DND-26 (50 nM, cat #L7526, Thermo
Fisher Scientific, Waltham, MA, USA) for 30 min at 37 ◦C. Cells were then washed, and
LysoTracker fluorescence was determined by analysis of fluorescence microscopy images
in a Floid Cells Imaging Station microscope (Cat# 4471136, Life Technologies, Carlsbad,
CA, USA), or flow cytometry using a BD LSRFortessa II flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA). The experiment was conducted 3 times, and 10,000 events were
acquired for analysis. Flow cytometry analysis for LysoTracker/SSCA was performed
by selecting, in the FL-1 channel, all cells with LysoTracker reactivity (>99%), in order to
perform the analysis of the total LysoTracker-positive population. SSCA parameter was
adjusted to the mean fluorescence of the control (UNT; 40 K ± 3.5 K) plus two standard
deviations (i.e., values above 47 K). Quantitative data and figures were obtained using
FlowJo 7.6.2 Data Analysis Software (BD Biosciences, Franklin Lakes, NJ, USA).

4.2.4. Analysis of Mitochondrial Membrane Potential (∆Ψm)

The assessment of ∆Ψm was performed according to Ref. [95]. Briefly, cells were incu-
bated for 20 min at RT in the dark, with a deep-red MitoTracker (20 nM final concentration)
compound (cat #M22426, Thermo Scientific, Waltham, MA, USA). Cells were analyzed
using fluorescence microscopy Floid Cells Imaging Station microscope (cat# 4471136, Life
Technologies, Carlsbad, CA, USA), or a BD LSRFortessa II flow cytometer (BD Biosciences,
Franklin Lakes, NJ, USA). The experiment was conducted 3 times, and 10,000 events were
acquired for analysis. MitoTracker highly positive cells were selected located between 104 and
106. No discrimination by complexity was made. Quantitative data and figures were obtained
using FlowJo 7.6.2 Data Analysis Software (BD Biosciences, Franklin Lakes, NJ, USA).

4.2.5. Detection of oxDJ-1, Cleaved Caspase 3 (CC3), LRRK2, Alpha-Synuclein, and LC3-II
Using Fluorescent Microscopy and Flow Cytometry

After each treatment, cells (1 × 105) were fixed in 80% ethanol and stored at 20 ◦C
overnight. Then, cells were washed with PBS and permeabilized with 0.2% triton X-100
(Cat# 93443, Sigma-Aldrich, St. Louis, MO, USA) plus 1.5% bovine serum albumin (BSA,
Cat# A9418, Sigma-Aldrich, St. Louis, MO, USA) in phosphate-buffered solution (PBS) for
30 min. Then, cells were washed and incubated with primary antibodies (1:200; diluted in
PBS containing 0.1% BSA) against oxidized DJ-1 (1:500; ox (Cys106) DJ1; spanning residue
C106 of human PARK7/DJ1; oxidized to produce cysteine sulfonic (SO3) acid; Abcam cat
#AB169520; Boston, MA, USA), CC3 (1:250; cat #AB3623, Millipore, Merck, Darmstadt,
Germany), p-(S935)-LRRK2 (Abcam cat #AB133450; Boston, MA, USA), α-synuclein (pS129;
Abcam cat #AB51253; Boston, MA, USA), and LC3-II (cat #NB100-2220, Novus Biologicals,
Englewood, CO, USA) overnight at 4 ◦C. After exhaustive rinsing, we incubated the
cells with secondary fluorescent antibodies (DyLight 488 horse anti-rabbit and mouse
antibodies, cats DI 1094 and DI 2488, Vector Laboratories, Newark, NJ, USA) at 1:500.
Finally, cells were washed and re-suspended in PBS for analysis on a BD LSRFortessa II
flow cytometer (BD Biosciences, Franklin Lakes, NJ, USA). Twenty thousand events were
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acquired, and the acquisition analysis was performed using FlowJo 7.6.2 Data Analysis
Software (BD Biosciences, Franklin Lakes, NJ, USA). For microscopy, the nuclei were stained
with (0.5 µM) Hoechst 33342 (Life Technologies, Carlsbad, CA, USA), and images were
acquired on a Floyd Cells Imaging Station microscope (Cat# 4471136, Life Technologies,
Carlsbad, CA, USA).

4.2.6. Autophagy Assay

The autophagy assay was performed according to the manufacturer’s recommenda-
tion (cat #MAK138, Sigma-Aldrich, Saint Louis, MO, USA). Briefly, cells under different
treatments were incubated with 1X stain reagent for 20 min. Then, the fluorescence inten-
sity (ex 360/em 520 nm) was measured using a BD LSRFortessa II flow cytometer (BD
Biosciences). Twenty thousand events were acquired, and the acquisition analysis was
performed using FlowJo 7.6.2 Data Analysis Software (BD Biosciences, Franklin Lakes,
NJ, USA).

4.3. Molecular Docking

For in silico molecular docking analysis, we used the X-ray diffraction crystallography
protein structure of glucocerebrosidase (GCase; Protein Data Bank (PDB) code: 6T13). Blind
molecular docking was performed with CB-Dock version 2 [47], a cavity detection-guided
protein–ligand blind docking web server that uses Autodock Vina (version 1.1.2, Scripps
Research Institute, La Jolla, CA, USA). The SDF structure files of the tested compounds
(conduritol-β-epoxide (CBE): PubChem CID 119054; rotenone (ROT): PubChem CID 6758)
were downloaded from PubChem. Molecular blind docking was performed by uploading
the 3D structure PDB file of GCase into the server with the SDF file of each compound.
For analysis, we selected the docking poses with the strongest Vina score in the catalyt-
ical pocket. The generated PDB files of the molecular docking of each compound were
visualized with the CB-Dock2 interphase.

4.4. Data Analysis

In this experimental design, a vial of HEK-293 (WT and LRRK2 KO cells) was thawed
and cultured, and the cell suspension was pipetted at a standardized cellular density of
2 × 104 cells per cm2 into different wells of a 24-well plate. Cells (i.e., the biological and
observational units) [96] were randomized to wells by simple randomization (sampling
without replacement method), and then, wells (i.e., the experimental units) were random-
ized to treatments using a similar method. Experiments were conducted in triplicate. The
data from individual replicate wells were averaged to yield a value of n = 1 for the exper-
iment, and this was repeated on three occasions blind to the experimenter and/or flow
cytometer analyst for a final value of n = 3 [96]. Based on the assumptions that the experi-
mental unit (i.e., the well) data comply with independence of observations, the dependent
variable is normally distributed in each treatment group (Shapiro–Wilk test), and there
is homogeneity of variances (Levene’s test); the statistical significance was determined
by one-way analysis of variance (ANOVA) followed by Tukey’s post hoc comparison cal-
culated with GraphPad Prism 5.0 software (https://www.graphpad.com/; accessed on
5 February 2023). Differences between groups were only deemed significant when a p-value
of 0.05 (*), 0.001 (**), or 0.001 (***). All data were illustrated as the mean SD.

5. Conclusions

In this work, we demonstrated that mitochondrial damage, α-Syn, reduced GCase
activity, and LRRK2 converge to contribute synergistically to the dysfunction of ALP
and apoptosis cell death. Taken together, our findings suggest that ROT induces two
convergent pathways. On the one hand, ROT indirectly generates H2O2 via the inhibition
of mitochondrial complex I. H2O2 not only oxidizes DJ-1Cys106SH into DJ-1Cys106SO3
but also induces p-Ser935 LRRK2, which, in turn, phosphorylates α-Syn (p-Ser129α-Syn).
Interestingly, ROT decreases GCase activity, leading to an accumulation of lysosomes and

https://www.graphpad.com/
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autophagolysosomes, as evidenced by a significant increase in the accumulation of the
LC3-II marker. In parallel, ROT induces the loss of ∆Ψm, leading to the production of
CC3 and apoptosis-induced cell death (Figure 10A). On the other hand, ROT causes no
damage in HEK-293 LRRK2 KO cells. In fact, ROT decreases GCase activity. Consequently,
it leads to the accumulation of lysosomes and autophagolysosomes, but there are no
signs of OS, e.g., DJ-1Cys106SO3, p-Ser129α-Syn, damage to ∆Ψm, or CC3-positive cells,
resulting in cell survival (Figure 10B). Therefore, our findings suggest that LRRK2 might
operate as a multi-target pro-apoptotic kinase [26,71], contributing to mitochondrial and
cell death concurrently with phosphorylated Ser129 α-Syn in cells exposed to OS stimuli [97].
Interestingly, CBE induces, in HEK-293 cells (Figure 10A), a similar cellular phenotype as
HEK-293 LRRK2 KO cells exposed to ROT (Figure 10B). These observations imply that the
combined development of LRRK2 inhibitors [98,99] and compounds for recovering GCase
activity [38,100] might be promising therapeutic agents for PD.
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Figure 10. Schematic model of cell signaling induced by rotenone and conduritol-β-epoxide: A 
mechanistic explanation of the interaction between LRRK2 kinase, α-Synuclein, glucocerebrosidase, 
lysosomes, and autophagosomes. (A) Rotenone (ROT, red full star) binds to the ubiquinone binding 
site of mitochondrial complex I (NADH:ubiquinone oxidoreductase), thus preventing electron 
transfer via Flavin mononucleotide (FMN) to coenzyme Q10 (1). Consequently, the interruption of 
the electron transport chain concomitantly generates anion superoxide (O2−) and hydrogen peroxide 
(H2O2, 2). This last compound is capable of oxidizing the stress sensor protein DJ-1Cys106-SH into 
DJ-1Cys106-SO3 (3), directly activates LRRK2 (leucine-rich repeat kinase 2) kinase by autophosphor-
ylation (4) or indirectly phosphorylates LRRK2 through activation of MEKK1 (mitogen-activated 
protein/extracellular signal-related protein kinase (MAP/ERK) kinase (MEK))/IKK (IκB kinase, 5). 
Once LRRK2 is phosphorylated at Ser935, the active p-(S-935)-LRRK2 kinase (6) phosphorylates three 
major targets: (i) alpha-synuclein (α-Syn) at residue Ser129 (7), which, in turn, interacts with mito-
chondria complex I, thereby generating H2O2, and induces loss of mitochondrial membrane poten-
tial (ΔΨm); (ii) it inactivates protein PRDX3 (peroxiredoxin 3, 8), thereby preventing H2O2 catalysis; 
(iii) p-(S-935)-LRRK2 activates the mitochondrial fission protein DLP-1 (dynamin-like protein 1, 9), 

Figure 10. Schematic model of cell signaling induced by rotenone and conduritol-β-epoxide: A
mechanistic explanation of the interaction between LRRK2 kinase, α-Synuclein, glucocerebrosidase,
lysosomes, and autophagosomes. (A) Rotenone (ROT, red full star) binds to the ubiquinone binding
site of mitochondrial complex I (NADH:ubiquinone oxidoreductase), thus preventing electron trans-
fer via Flavin mononucleotide (FMN) to coenzyme Q10 (1). Consequently, the interruption of the
electron transport chain concomitantly generates anion superoxide (O2

−) and hydrogen peroxide
(H2O2, 2). This last compound is capable of oxidizing the stress sensor protein DJ-1Cys106-SH into
DJ-1Cys106-SO3 (3), directly activates LRRK2 (leucine-rich repeat kinase 2) kinase by autophospho-
rylation (4) or indirectly phosphorylates LRRK2 through activation of MEKK1 (mitogen-activated
protein/extracellular signal-related protein kinase (MAP/ERK) kinase (MEK))/IKK (IκB kinase, 5).
Once LRRK2 is phosphorylated at Ser935, the active p-(S-935)-LRRK2 kinase (6) phosphorylates
three major targets: (i) alpha-synuclein (α-Syn) at residue Ser129 (7), which, in turn, interacts with
mitochondria complex I, thereby generating H2O2, and induces loss of mitochondrial membrane
potential (∆Ψm); (ii) it inactivates protein PRDX3 (peroxiredoxin 3, 8), thereby preventing H2O2 catalysis;
(iii) p-(S-935)-LRRK2 activates the mitochondrial fission protein DLP-1 (dynamin-like protein 1, 9), which,
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together with the fission protein-1 (Fis-1) receptor, induces mitochondria depolarization, fragmenta-
tion, and aggregation (10). Subsequently, the release of apoptogenic proteins (e.g., cytochrome C)
results in the production of cleaved caspase 3 (11), which is responsible for chromatin condensation
and DNA fragmentation (12) in HEK-293 LRRK2 WT cells. The nucleus morphology constitutes
the typical hallmark of apoptosis. Alternatively, ROT and conduritol-β-epoxide (CBE, 13) bind to
the enzyme glucocerebrosidase (GCase) (14). The reduced catalytic activity of GCase results in a
limited fusion of autophagosomes and lysosomes, leading to their respective accumulation (15).
(B) Rotenone (ROT, red full star) binds to the complex I (1), thereby generating (O2

.−) and hydrogen
peroxide (H2O2, 2). This last compound is decomposed by PRDX3 (8). As a result, ∆Ψm is preserved
(16), avoiding the release of apoptogenic proteins. Therefore, the nucleus is conserved intact (17) in
HEK-293 LRRK2 KO cells. Additionally, ROT binds to GCase (14), resulting in the accumulation of
lysosomes and autophagy–lysosomes (15). The cell shows neither signs of oxidative stress (OS) nor
apoptosis markers.
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