Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = inherited epilepsy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 888 KiB  
Review
Experimental Animal Models of Phenylketonuria: Pros and Cons
by N. A. Bobrova, D. I. Lyubimova, D. M. Mishina, V. S. Lobanova, S. I. Valieva, O. N. Mityaeva, S. G. Feoktistova and P. Yu. Volchkov
Int. J. Mol. Sci. 2025, 26(11), 5262; https://doi.org/10.3390/ijms26115262 - 30 May 2025
Viewed by 746
Abstract
Phenylketonuria (PKU) is a common inherited metabolic disorder characterised by impaired metabolism of the amino acid phenylalanine. The disease results from a mutation in the phenylalanine hydroxylase (PAH) enzyme, which converts phenylalanine (Phe) into tyrosine (Tyr). The absence or inactivity of this enzyme [...] Read more.
Phenylketonuria (PKU) is a common inherited metabolic disorder characterised by impaired metabolism of the amino acid phenylalanine. The disease results from a mutation in the phenylalanine hydroxylase (PAH) enzyme, which converts phenylalanine (Phe) into tyrosine (Tyr). The absence or inactivity of this enzyme results in significantly elevated levels of Phe in the blood, which can lead to severe neurological conditions, including intellectual disability, epilepsy, and other developmental disorders. Since its discovery, animal models have played a crucial role for understanding the pathophysiology of PKU, as well as providing recognisable proof of targets and surveying new remedial specialists and in vivo medicines. In the present study, we conducted a comprehensive review of the experimental and non-experimental animal models employed for phenylketonuria and its associated complications. Full article
Show Figures

Figure 1

7 pages, 860 KiB  
Case Report
Expanding the Mutational Spectrum of TSPEAR in Ectodermal Dysplasia Type 14: A Familial Case Study
by Roberto Sirica, Alessandro Ottaiano, Daniele De Brasi, Simone Marcella, Fabio Acquaviva, Monica Ianniello, Nadia Petrillo, Valentina De Angelis, Raffaella Ruggiero, Rossana D’Angelo, Eloisa Evangelista, Antonio Fico and Giovanni Savarese
Genes 2025, 16(5), 519; https://doi.org/10.3390/genes16050519 - 29 Apr 2025
Viewed by 596
Abstract
Background: Ectodermal dysplasia (ED) encompasses a heterogeneous group of genetic disorders affecting ectoderm-derived structures such as hair, teeth, nails, and sweat glands. Among these, variants in TSPEAR (Thrombospondin-type laminin G domain and epilepsy-associated repeats) have been implicated in autosomal recessive ED type 14 [...] Read more.
Background: Ectodermal dysplasia (ED) encompasses a heterogeneous group of genetic disorders affecting ectoderm-derived structures such as hair, teeth, nails, and sweat glands. Among these, variants in TSPEAR (Thrombospondin-type laminin G domain and epilepsy-associated repeats) have been implicated in autosomal recessive ED type 14 (OMIM 618180), predominantly manifesting with dental anomalies and hair dysplasia. However, the mutational spectrum of TSPEAR remains incompletely characterized. Methods: Two female siblings (ID#1 and ID#4) were clinically evaluated for ED. Genetic analysis, including next-generation sequencing (NGS) and Sanger validation, was conducted to identify TSPEAR variants. A segregation study confirmed inheritance patterns within the family. Results: Both affected siblings exhibited hallmark features of TSPEAR-related ED14, including oligodontia with dysmorphic, pointed maxillary central incisors. Hair thinning and cutaneous angiomas were predominant in ID#4. Genetic analysis identified two compound heterozygous variants in TSPEAR: c.543-1G>A, a splice-site variant likely to disrupt mRNA processing, and NM_144991.2:c.1251G>C(p.Gln417His), a missense variant with predicted deleterious effects. Segregation analysis confirmed maternal and paternal inheritance of the respective variants. A third sibling, ID#5, was identified as a heterozygous carrier without clinical manifestations. Conclusions: This study contributes to the expanding understanding of TSPEAR-related ED14 by providing novel genotype–phenotype correlations. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 1346 KiB  
Article
The POLG Variant c.678G>C; p.(Gln226His) Is Associated with Mitochondrial Abnormalities in Fibroblasts Derived from a Patient Compared to a First-Degree Relative
by Imra Mantey, Felix Langerscheidt, Çağla Çakmak Durmaz, Naomi Baba, Katharina Burghardt, Mert Karakaya and Hans Zempel
Genes 2025, 16(2), 198; https://doi.org/10.3390/genes16020198 - 5 Feb 2025
Cited by 1 | Viewed by 1216
Abstract
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the [...] Read more.
Background: The nuclear-encoded enzyme polymerase gamma (Pol-γ) is crucial in the replication of the mitochondrial genome (mtDNA), which in turn is vital for mitochondria and hence numerous metabolic processes and energy production in eukaryotic cells. Variants in the POLG gene, which encodes the catalytic subunit of Pol-γ, can significantly impair Pol-γ enzyme function. Pol-γ-associated disorders are referred to as POLG-spectrum disorders (POLG-SDs) and are mainly autosomal-recessively inherited. Clinical manifestations include muscle weakness and fatigue, and severe forms of the disease can lead to premature death in infancy, childhood, and early adulthood, often associated with seizures, liver failure, or intractable epilepsy. Here, we analyzed fibroblasts from a compound heterozygous patient with the established pathogenic variant c.2419C>T; p.(Arg807Cys) and a previously undescribed variant c.678G>C; p.(Gln226His) with a clinical manifestation compatible with POLG-SDs, sensory ataxic neuropathy, and infantile muscular atrophy. We conducted a battery of functional studies for Pol-γ and mitochondrial dysfunction on the patient’s fibroblasts, to test whether the novel variant c.678G>C; p.(Gln226His) may be causative in human disease. Aims/Methods: We analyzed skin-derived fibroblasts in comparison to a first-degree relative (the mother of the patient), an asymptomatic carrier harboring only the established c.2419C>T; p.(Arg807Cys) mutation. Assessments of mitochondrial function included measurements of mtDNA content, mRNA levels of mitochondrial genes, mitochondrial mass, and mitochondrial morphology. Case Presentation and Results: A 13-year-old male presented with symptoms starting at three years of age, including muscle weakness and atrophy in the lower extremities and facial muscles, which later extended to the upper limbs, voice, and back muscles, without further progression. The patient also reported fatigue and muscle pain after physical activity, with no sensory deficits. Extensive diagnostic tests such as electromyography, nerve conduction studies, muscle biopsy, and MRI were unremarkable. Exome sequencing revealed that he carried the compound heterozygous variants in POLG c.678G>C; p.(Gln226His) and c.2419C>T; p.(Arg807Cys), but no other potential genetic pathogenic causes. In comparison to a first-degree relative (his mother) who only carried the c.2419C>T; p.(Arg807Cys) pathogenic mutation, in vitro analyses revealed a significant reduction in mtDNA content (~50%) and mRNA levels of mtDNA-encoded proteins. Mitochondrial mass was reduced by approximately 20%, and mitochondrial interconnectivity within cells was impaired, as determined by fluorescence microscopy and mitochondrial staining. Conclusions: Our findings suggest that the c.678G>C; p.(Gln226His) variant, in conjunction with the c.2419C>T; p.(Arg807Cys) mutation, may compromise mtDNA replication and mitochondrial function and could result in clinically significant mitochondriopathy. As this study is based on one patient compared to a first-degree relative (but with an identical mitochondrial genome), the pathogenicity of c.678G>C; p.(Gln226His) of POLG should be confirmed in future studies, in particular, in conjunction with other POLG-variants. Full article
Show Figures

Figure 1

12 pages, 2145 KiB  
Case Report
Three Cases of Spinocerebellar Ataxia Type 2 (SCA2) and Pediatric Literature Review: Do Not Forget Trinucleotide Repeat Disorders in Childhood-Onset Progressive Ataxia
by Jacopo Sartorelli, Maria Grazia Pomponi, Giacomo Garone, Gessica Vasco, Francesca Cumbo, Vito Luigi Colona, Adele D’Amico, Enrico Bertini and Francesco Nicita
Brain Sci. 2025, 15(2), 156; https://doi.org/10.3390/brainsci15020156 - 4 Feb 2025
Viewed by 1833
Abstract
Background: Childhood-onset progressive ataxias are rare neurodegenerative disorders characterized by cerebellar signs, sometimes associated with other neurological or extra-neurological features. The autosomal dominant forms, known as spinocerebellar ataxias (SCAs), linked to trinucleotide (i.e., CAG) repeat disorders, are ultra-rare in children. We describe [...] Read more.
Background: Childhood-onset progressive ataxias are rare neurodegenerative disorders characterized by cerebellar signs, sometimes associated with other neurological or extra-neurological features. The autosomal dominant forms, known as spinocerebellar ataxias (SCAs), linked to trinucleotide (i.e., CAG) repeat disorders, are ultra-rare in children. We describe three patients from two unrelated families affected by spinocerebellar ataxia type 2 (SCA2) and present a literature review of pediatric cases. Methods: The patients’ clinical and genetic data were collected retrospectively. Results: The first case was a 9.5-year-old boy, affected by ataxia with oculomotor apraxia and cerebellar atrophy, subcortical myoclonus, and peripheral axonal sensitive polyneuropathy caused by a pathologic expansion in ATXN2, inherited from his asymptomatic father. Two brothers with familial SCA2 presented neurodegeneration leading to early death in one case and progressive ataxia, parkinsonism, and epilepsy with preserved ambulation at age 18 years in the second. To date, 19 pediatric patients affected by SCA2 have been reported, 3 of whom had a phenotype consistent with progressive ataxia with shorter CAG repeats, while 16 had more severe early-onset encephalopathy, with longer alleles. Conclusions: Although they are ultra-rare, trinucleotide repeat disorders must be considered in differential diagnosis of hereditary progressive ataxias in children, especially considering that they require targeted genetic testing and can manifest even before a parental carrier becomes symptomatic. Thus, they must also be taken into account with negative family history and when Next-Generation Sequencing (NGS) results are inconclusive. Notably, the association between cerebellar ataxia and other movement disorders should raise suspicion of SCA2 among differential diagnoses. Full article
(This article belongs to the Section Neurodegenerative Diseases)
Show Figures

Figure 1

8 pages, 1907 KiB  
Case Report
Electroencephalographic and Epilepsy Findings in ZNF711 Variants: A Case Series of Two Siblings
by Michele Minerva, Lorenzo Perilli, Samanta Carbone, Margherita Maria Rossi, Federica Lotti, Luisa Lonoce, Maria Rosaria Curcio and Salvatore Grosso
Neurol. Int. 2025, 17(1), 14; https://doi.org/10.3390/neurolint17010014 - 20 Jan 2025
Viewed by 938
Abstract
Background/Objectives: ZNF711(Zinc finger protein 711) encodes a zinc finger protein of currently undefined function, located on the X chromosome. Current knowledge includes a limited number of case reports where this gene has been exclusively associated with X-linked intellectual disability (XLID). As far as [...] Read more.
Background/Objectives: ZNF711(Zinc finger protein 711) encodes a zinc finger protein of currently undefined function, located on the X chromosome. Current knowledge includes a limited number of case reports where this gene has been exclusively associated with X-linked intellectual disability (XLID). As far as we are aware, we report the first cases of epilepsy associated with this particular variant. Our aim is to further delineate the phenotypic spectrum of ZNF711 gene pathogenic variants, adding clinical features to this rare condition, following a genotype-first approach. Case presentation: We describe the familiar case of two male siblings presenting with moderate intellectual disability (ID), language delay, and motor stereotypies. Additionally, they experienced generalized tonic–clonic seizures (GTCSs) and myoclonic seizures with interictal electroencephalographic abnormalities. Both children underwent various genetic testing and counselling, including an extended next-generation sequencing (NGS) panel, revealing a hemizygous c.657C > G pathogenic variant in the ZNF711 gene from maternal inheritance. Conclusions: This case expands the clinical range of ZNF711 variants by highlighting epilepsy as a potential comorbidity and suggesting other possible causal candidates for generalized epilepsy. Moreover, it emphasizes the need for further research into the phenotypic spectrum associated with this variant. Full article
Show Figures

Figure 1

9 pages, 591 KiB  
Commentary
LNC-ing Genetics in Mitochondrial Disease
by Rick Kamps and Emma Louise Robinson
Non-Coding RNA 2024, 10(6), 57; https://doi.org/10.3390/ncrna10060057 - 15 Nov 2024
Viewed by 1677
Abstract
Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), [...] Read more.
Primary mitochondrial disease (MD) is a group of rare genetic diseases reported to have a prevalence of 1:5000 and is currently without a cure. This group of diseases includes mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), Leber’s hereditary optic neuropathy (LHON), Leigh syndrome (LS), Kearns–Sayre syndrome (KSS), and myoclonic epilepsy and ragged-red fiber disease (MERRF). Additionally, secondary mitochondrial dysfunction has been implicated in the most common current causes of mortality and morbidity, including cardiovascular disease (CVD) and cancer. Identifying key genetic contributors to both MD and secondary mitochondrial dysfunction may guide clinicians to assess the most effective treatment course and prognosis, as well as informing family members of any hereditary risk of disease transmission. Identifying underlying genetic causes of primary and secondary MD involves either genome sequencing (GS) or small targeted panel analysis of known disease-causing nuclear- or mitochondrial genes coding for mitochondria-related proteins. Due to advances in GS, the importance of long non-coding RNA (lncRNA) as functional contributors to the pathophysiology of MD is being unveiled. A limited number of studies have thus far reported the importance of lncRNAs in relation to MD causation and progression, and we are entering a new area of attention for clinical geneticists in specific rare malignancies. This commentary provides an overview of what is known about the role of lncRNAs as genetic and molecular contributors to disease pathophysiology and highlights an unmet need for a deeper understanding of mitochondrial dysfunction in serious human disease burdens. Full article
Show Figures

Figure 1

12 pages, 1521 KiB  
Article
CIC-Related Neurodevelopmental Disorder: A Review of the Literature and an Expansion of Genotype and Phenotype
by Ivan Ruiz, Kimberly Wiltrout, Coral Stredny and Sonal Mahida
Genes 2024, 15(11), 1425; https://doi.org/10.3390/genes15111425 - 31 Oct 2024
Viewed by 2556
Abstract
Background: Genetic testing for neurodevelopmental disorders is now considered the standard of care for unexplained epilepsy as well as autism spectrum disorders, intellectual disability, and developmental delays with as many as 50% of individuals identified as having an underlying genetic etiology. Capicua ( [...] Read more.
Background: Genetic testing for neurodevelopmental disorders is now considered the standard of care for unexplained epilepsy as well as autism spectrum disorders, intellectual disability, and developmental delays with as many as 50% of individuals identified as having an underlying genetic etiology. Capicua (CIC) is a transcriptional repressor and is widely expressed among human brain tissue. Patients in the literature with pathogenic variants in CIC present with a broad spectrum of phenotypic abnormalities. Common features include epilepsy, developmental delay, intellectual disability, autism spectrum disorder, and MRI abnormalities amongst other neurodevelopmental symptoms. Variant type, age of onset, sex, and severity of manifestation also differ amongst probands. However, the full genotypic and phenotypic spectrum of CIC-related neurodevelopmental disorder has not been elucidated. Methods: Here we review patients reported in the literature with CIC variants and present two additional patients representing a novel genotype and phenotype. Results: Whole exome sequencing (WES) in this proband identified a novel paternally inherited likely pathogenic variant in CIC c.1526del p.(Pro509Hisfs*14). Both proband and father present with isolated epilepsy without other significant neurodevelopmental disorders. A review of the previous literature identified 20 individuals harboring CIC variants; the majority of these individuals present with a combination of neurodevelopmental features. Sixteen distinct variants were identified amongst these 20 patients. Conclusions: This family represents an expansion of the genotypic and phenotypic spectrum of CIC-related neurodevelopmental disorder. This information may lead to clinically actionable management changes for future patients identified with CIC variants considering standard anti-epileptic medication-weaning protocols. Full article
(This article belongs to the Special Issue Genetics of Rare Monogenic Neurodevelopmental Syndromes)
Show Figures

Figure 1

22 pages, 704 KiB  
Review
Potential Add-On Benefits of Dietary Intervention in the Treatment of Autosomal Dominant Polycystic Kidney Disease
by Erica Rosati, Giulia Condello, Chiara Tacente, Ilaria Mariani, Valeria Tommolini, Luca Calvaruso, Pierluigi Fulignati, Giuseppe Grandaliano and Francesco Pesce
Nutrients 2024, 16(16), 2582; https://doi.org/10.3390/nu16162582 - 6 Aug 2024
Viewed by 3696
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of renal failure. The pathogenesis of the disease encompasses several pathways and metabolic alterations, including the hyperactivation of mTOR and suppression of AMPK signaling pathways, as well as mitochondrial dysfunction. This [...] Read more.
Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of renal failure. The pathogenesis of the disease encompasses several pathways and metabolic alterations, including the hyperactivation of mTOR and suppression of AMPK signaling pathways, as well as mitochondrial dysfunction. This metabolic reprogramming makes epithelial cyst-lining cells highly dependent on glucose for energy and unable to oxidize fatty acids. Evidence suggests that high-carbohydrate diets may worsen the progression of ADPKD, providing the rationale for treating ADPKD patients with calorie restriction and, in particular, with ketogenic dietary interventions, already used for other purposes such as in overweight/obese patients or in the treatment of refractory epilepsy in children. Preclinical studies have demonstrated that calorie restriction may prevent and/or slow disease progression by inducing ketosis, particularly through increased beta-hydroxybutyrate (BHB) levels, which may modulate the metabolic signaling pathways altered in ADKPK. In these patients, although limited, ketogenic intervention studies have shown promising beneficial effects. However, larger and longer randomized controlled trials are needed to confirm their tolerability and safety in long-term maintenance and their additive role in the therapy of polycystic kidney disease. Full article
(This article belongs to the Special Issue Diet Management in Renal Diseases)
Show Figures

Figure 1

12 pages, 3239 KiB  
Article
Exploring the Genotype–Phenotype Correlations in a Child with Inherited Seizure and Thrombocytopenia by Digenic Network Analysis
by Shuanglong Lu, Zhixiao Niu and Xiaohong Qiao
Genes 2024, 15(8), 1004; https://doi.org/10.3390/genes15081004 - 31 Jul 2024
Cited by 1 | Viewed by 1390
Abstract
Understanding the correlation between genotype and phenotype remains challenging for modern genetics. Digenic network analysis may provide useful models for understanding complex phenotypes that traditional Mendelian monogenic models cannot explain. Clinical data, whole exome sequencing data, in silico, and machine learning analysis were [...] Read more.
Understanding the correlation between genotype and phenotype remains challenging for modern genetics. Digenic network analysis may provide useful models for understanding complex phenotypes that traditional Mendelian monogenic models cannot explain. Clinical data, whole exome sequencing data, in silico, and machine learning analysis were combined to construct a digenic network that may help unveil the complex genotype–phenotype correlations in a child presenting with inherited seizures and thrombocytopenia. The proband inherited a maternal heterozygous missense variant in SCN1A (NM_001165963.4:c.2722G>A) and a paternal heterozygous missense variant in MYH9 (NM_002473.6:c.3323A>C). In silico analysis showed that these two variants may be pathogenic for inherited seizures and thrombocytopenia in the proband. Moreover, focusing on 230 epilepsy-associated genes and 35 thrombopoiesis genes, variant call format data of the proband were analyzed using machine learning tools (VarCoPP 2.0) and Digenic Effect predictor. A digenic network was constructed, and SCN1A and MYH9 were found to be core genes in the network. Further analysis showed that MYH9 might be a modifier of SCN1A, and the variant in MYH9 might not only influence the severity of SCN1A-related seizure but also lead to thrombocytopenia in the bone marrow. In addition, another eight variants might also be co-factors that account for the proband’s complex phenotypes. Our data show that as a supplement to the traditional Mendelian monogenic model, digenic network analysis may provide reasonable models for the explanation of complex genotype–phenotype correlations. Full article
Show Figures

Figure 1

14 pages, 3760 KiB  
Article
The Biallelic Inheritance of Two Novel SCN1A Variants Results in Developmental and Epileptic Encephalopathy Responsive to Levetiracetam
by Giorgia Dinoi, Elena Conte, Orazio Palumbo, Mario Benvenuto, Maria Antonietta Coppola, Pietro Palumbo, Patrizia Lastella, Brigida Boccanegra, Ester Di Muro, Marco Castori, Massimo Carella, Vittorio Sciruicchio, Marina de Tommaso, Antonella Liantonio, Annamaria De Luca, Angela La Neve and Paola Imbrici
Biomedicines 2024, 12(8), 1698; https://doi.org/10.3390/biomedicines12081698 - 31 Jul 2024
Cited by 3 | Viewed by 1828
Abstract
Loss-, gain-of-function and mixed variants in SCN1A (Nav1.1 voltage-gated sodium channel) have been associated with a spectrum of neurologic disorders with different severity and drug-responsiveness. Most SCN1A variants are heterozygous changes occurring de novo or dominantly inherited; recessive inheritance has been reported in [...] Read more.
Loss-, gain-of-function and mixed variants in SCN1A (Nav1.1 voltage-gated sodium channel) have been associated with a spectrum of neurologic disorders with different severity and drug-responsiveness. Most SCN1A variants are heterozygous changes occurring de novo or dominantly inherited; recessive inheritance has been reported in a few cases. Here, we report a family in which the biallelic inheritance of two novel SCN1A variants, N935Y and H1393Q, occurs in two siblings presenting with drug-responsive developmental and epileptic encephalopathy and born to heterozygous asymptomatic parents. To assess the genotype–phenotype correlation and support the treatment choice, HEK 293 cells were transfected with different combinations of the SCN1A WT and mutant cDNAs, and the resulting sodium currents were recorded through whole-cell patch-clamp. Functional studies showed that the N935Y and H1393Q channels and their combinations with the WT (WT + N935Y and WT + H1393Q) had current densities and biophysical properties comparable with those of their respective control conditions. This explains the asymptomatic condition of the probands’ parents. The co-expression of the N935Y + H1393Q channels, mimicking the recessive inheritance of the two variants in siblings, showed ~20% reduced current amplitude compared with WT and with parental channels. This mild loss of Nav1.1 function may contribute in part to the disease pathogenesis, although other mechanisms may be involved. Full article
(This article belongs to the Special Issue Epilepsy: From Mechanisms to Therapeutic Approaches)
Show Figures

Figure 1

10 pages, 1362 KiB  
Article
From Alpha-Thalassemia Trait to NPRL3-Related Epilepsy: A Genomic Diagnostic Odyssey
by Maryam Nabavi Nouri, Lama Alandijani, Kalene van Engelen, Soumitra Tole, Emilie Lalonde and Tugce B. Balci
Genes 2024, 15(7), 836; https://doi.org/10.3390/genes15070836 - 25 Jun 2024
Viewed by 2278
Abstract
Introduction: The NPRL3 gene is a critical component of the GATOR1 complex, which negatively regulates the mTORC1 pathway, essential for neurogenesis and brain development. Located on chromosome 16p13.3, NPRL3 is situated near the α-globin gene cluster. Haploinsufficiency of NPRL3, either by [...] Read more.
Introduction: The NPRL3 gene is a critical component of the GATOR1 complex, which negatively regulates the mTORC1 pathway, essential for neurogenesis and brain development. Located on chromosome 16p13.3, NPRL3 is situated near the α-globin gene cluster. Haploinsufficiency of NPRL3, either by deletion or a pathogenic variant, is associated with a variable phenotype of focal epilepsy, with or without malformations of cortical development, with known decreased penetrance. Case Description: This work details the diagnostic odyssey of a neurotypical 10-year-old boy who presented at age 2 with unusual nocturnal episodes and a history of microcytic anemia, as well as a review of the existing literature on NPRL3-related epilepsy, with an emphasis on individuals with deletions who also present with α-thalassemia trait. The proband’s episodes were mistaken for gastroesophageal reflux disease for several years. He had molecular testing for his α-thalassemia trait and was noted to carry a deletion encompassing the regulatory region of the α-thalassemia gene cluster. Following the onset of overt focal motor seizures, genetic testing revealed a heterozygous loss of NPRL3, within a 106 kb microdeletion on chromosome 16p13.3, inherited from his mother. This deletion encompassed the entire NPRL3 gene, which overlaps the regulatory region of the α-globin gene cluster, giving him the dual diagnosis of NPRL3-related epilepsy and α-thalassemia trait. Brain imaging postprocessing showed left hippocampal sclerosis and mid-posterior para-hippocampal focal cortical dysplasia, leading to the consideration of epilepsy surgery. Conclusions: This case underscores the necessity of early and comprehensive genetic assessments in children with epilepsy accompanied by systemic features, even in the absence of a family history of epilepsy or a developmental delay. Recognizing phenotypic overlaps is crucial to avoid diagnostic delays. Our findings also highlight the impact of disruptions in regulatory regions in genetic disorders: any individual with full gene deletion of NPRL3 would have, at a minimum, α-thalassemia trait, due to the presence of the major regulatory element of α-globin genes overlapping the gene’s introns. Full article
Show Figures

Figure 1

12 pages, 1175 KiB  
Article
NGS-Based Identification of Two Novel PCDH19 Mutations in Female Patients with Early-Onset Epilepsy
by Renata Szalai, Kinga Hadzsiev, Agnes Till, Andras Fogarasi, Timea Bodo, Gergely Buki, Zsolt Banfai and Judit Bene
Int. J. Mol. Sci. 2024, 25(11), 5732; https://doi.org/10.3390/ijms25115732 - 24 May 2024
Viewed by 1821
Abstract
Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females [...] Read more.
Developmental and epileptic encephalopathy-9 (DEE9) is characterized by seizure onset in infancy, mild to severe intellectual impairment, and psychiatric features and is caused by a mutation in the PCDH19 gene on chromosome Xq22. The rare, unusual X-linked type of disorder affects heterozygous females and mosaic males; transmitting males are unaffected. In our study, 165 patients with epilepsy were tested by Next Generation Sequencing (NGS)-based panel and exome sequencing using Illumina technology. PCDH19 screening identified three point mutations, one indel, and one 29 bp-long deletion in five unrelated female probands. Two novel mutations, c.1152_1180del (p.Gln385Serfs*6) and c.830_831delinsAA (p.Phe277*), were identified and found to be de novo pathogenic. Moreover, among the three inherited mutations, two originated from asymptomatic mothers and one from an affected father. The PCDH19 c.1682C>T and c.1711G>T mutations were present in the DNA samples of asymptomatic mothers. After targeted parental testing, X chromosome inactivation tests and Sanger sequencing were carried out for mosaicism examination on maternal saliva samples in the two asymptomatic PCDH19 mutation carrier subjects. Tissue mosaicism and X-inactivation tests were negative. Our results support the opportunity for reduced penetrance in DEE9 and contribute to expanding the genotype–phenotype spectrum of PCDH19-related epilepsy. Full article
(This article belongs to the Special Issue Genetic, Genomic and Metabolomic Investigation of Rare Diseases)
Show Figures

Figure 1

7 pages, 193 KiB  
Brief Report
Evaluating the Inheritance Risk: Epilepsy Prevalence among Offspring of Adults with Epilepsy in a Tertiary Referral Epilepsy Center
by Tassanai Intravooth, Hazal Baran, Anne-Sophie Wendling, Amjad Halaby and Bernhard J. Steinhoff
J. Clin. Med. 2024, 13(10), 2932; https://doi.org/10.3390/jcm13102932 - 16 May 2024
Viewed by 1522
Abstract
While significant strides have been made in comprehending the pathophysiology and treatment of epilepsy, further investigation is warranted to elucidate the factors impacting its development and transmission, particularly within familial contexts. This study sought to explore the prevalence and risk factors associated with [...] Read more.
While significant strides have been made in comprehending the pathophysiology and treatment of epilepsy, further investigation is warranted to elucidate the factors impacting its development and transmission, particularly within familial contexts. This study sought to explore the prevalence and risk factors associated with epilepsy in the offspring of patients with epilepsy who were treated at a tertiary epilepsy center. Adult patients with confirmed epilepsy (PWE) receiving outpatient care were consecutively enrolled, starting from January 2021 to January 2023. Data were recorded for various variables, including age, gender, epilepsy pathophysiology, cognitive impairment, and family history of epilepsy. Descriptive statistics, various statistical tests, and multivariate logistic regression analyses were employed to analyze the data. A total of 1456 PWE were included. Among them, 463 patients (31.8%) had children. Twenty-five patients had offspring diagnosed with epilepsy, representing a prevalence of 5.4%. Analysis of the offspring with epilepsy revealed older ages, a higher proportion of parents with idiopathic epilepsy, and a greater prevalence of a positive family history of epilepsy. Multivariate logistic regression analysis demonstrated a significant association between a family history of epilepsy and increased epilepsy risk in offspring. Genetic syndrome-immanent predisposition, advanced age, and a family history of epilepsy were identified as significant risk factors for epilepsy in offspring by means of this mono-center study. Full article
(This article belongs to the Special Issue Clinical Diagnosis and Treatment of Epilepsy)
30 pages, 18286 KiB  
Review
X-Linked Epilepsies: A Narrative Review
by Pia Bernardo, Claudia Cuccurullo, Marica Rubino, Gabriella De Vita, Gaetano Terrone, Leonilda Bilo and Antonietta Coppola
Int. J. Mol. Sci. 2024, 25(7), 4110; https://doi.org/10.3390/ijms25074110 - 8 Apr 2024
Cited by 4 | Viewed by 3947
Abstract
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in [...] Read more.
X-linked epilepsies are a heterogeneous group of epileptic conditions, which often overlap with X-linked intellectual disability. To date, various X-linked genes responsible for epilepsy syndromes and/or developmental and epileptic encephalopathies have been recognized. The electro-clinical phenotype is well described for some genes in which epilepsy represents the core symptom, while less phenotypic details have been reported for other recently identified genes. In this review, we comprehensively describe the main features of both X-linked epileptic syndromes thoroughly characterized to date (PCDH19-related DEE, CDKL5-related DEE, MECP2-related disorders), forms of epilepsy related to X-linked neuronal migration disorders (e.g., ARX, DCX, FLNA) and DEEs associated with recently recognized genes (e.g., SLC9A6, SLC35A2, SYN1, ARHGEF9, ATP6AP2, IQSEC2, NEXMIF, PIGA, ALG13, FGF13, GRIA3, SMC1A). It is often difficult to suspect an X-linked mode of transmission in an epilepsy syndrome. Indeed, different models of X-linked inheritance and modifying factors, including epigenetic regulation and X-chromosome inactivation in females, may further complicate genotype–phenotype correlations. The purpose of this work is to provide an extensive and updated narrative review of X-linked epilepsies. This review could support clinicians in the genetic diagnosis and treatment of patients with epilepsy featuring X-linked inheritance. Full article
(This article belongs to the Special Issue Molecular Advances in Epilepsy and Seizures)
Show Figures

Figure 1

10 pages, 5007 KiB  
Case Report
Autosomal Recessive Rod–Cone Dystrophy with Mild Extra-Ocular Manifestations Due to a Splice-Affecting Variant in BBS9
by Iris Deitch, Sofia Itskov, Daan Panneman, Aasem Abu Shtaya, Tal Saban, Yael Goldberg, Miriam Ehrenberg, Frans P. M. Cremers, Susanne Roosing and Tamar Ben-Yosef
Curr. Issues Mol. Biol. 2024, 46(3), 2566-2575; https://doi.org/10.3390/cimb46030163 - 18 Mar 2024
Viewed by 1734
Abstract
Bardet–Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient [...] Read more.
Bardet–Biedl syndrome (BBS), one of the most common forms of syndromic inherited retinal diseases (IRDs), is characterized by the combination of retinal degeneration with additional extra-ocular manifestations, including obesity, intellectual disability, kidney disease, polydactyly and other skeletal abnormalities. We observed an Israeli patient with autosomal recessive apparently non-syndromic rod–cone dystrophy (RCD). Extra-ocular findings were limited to epilepsy and dental problems. Genetic analysis with a single molecule molecular inversion probes-based panel that targets the exons and splice sites of 113 genes associated with retinitis pigmentosa and Leber congenital amaurosis revealed a homozygous rare missense variant in the BBS9 gene (c.263C>T;p.(Ser88Leu)). This variant, which affects a highly conserved amino acid, is also located in the last base of Exon 3, and predicted to be splice-altering. An in vitro minigene splice assay demonstrated that this variant leads to the partial aberrant splicing of Exon 3. Therefore, we suggest that this variant is likely hypomorphic. This is in agreement with the relatively mild phenotype observed in the patient. Hence, the findings in our study expand the phenotypic spectrum associated with BBS9 variants and indicate that variants in this gene should be considered not only in BBS patients but also in individuals with non-syndromic IRD or IRD with very mild extra-ocular manifestations. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

Back to TopTop