Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = independent target subspace (ITS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 12288 KiB  
Article
Bayesian Distributed Target Detectors in Compound-Gaussian Clutter Against Subspace Interference with Limited Training Data
by Kun Xing, Zhiwen Cao, Weijian Liu, Ning Cui, Zhiyu Wang, Zhongjun Yu and Faxin Yu
Remote Sens. 2025, 17(5), 926; https://doi.org/10.3390/rs17050926 - 5 Mar 2025
Viewed by 706
Abstract
In this article, the problem of Bayesian detecting rank-one distributed targets under subspace interference and compound Gaussian clutter with inverse Gaussian texture is investigated. Due to the clutter heterogeneity, the training data may be insufficient. To tackle this problem, the clutter speckle covariance [...] Read more.
In this article, the problem of Bayesian detecting rank-one distributed targets under subspace interference and compound Gaussian clutter with inverse Gaussian texture is investigated. Due to the clutter heterogeneity, the training data may be insufficient. To tackle this problem, the clutter speckle covariance matrix (CM) is assumed to obey the complex inverse Wishart distribution, and the Bayesian theory is utilized to obtain an effective estimation. Moreover, the target echo is assumed to be with a known steering vector and unknown amplitudes across range cells. The interference is regarded as a steering matrix that is linearly independent of the target steering vector. By utilizing the generalized likelihood ratio test (GLRT), a Bayesian interference-canceling detector that can work in the absence of training data is derived. Moreover, five interference-cancelling detectors based on the maximum a posteriori (MAP) estimate of the speckle CM are proposed with the two-step GLRT, the Rao, Wald, Gradient, and Durbin tests. Experiments with simulated and measured sea clutter data indicate that the Bayesian interference-canceling detectors show better performance than the competitor in scenarios with limited training data. Full article
Show Figures

Figure 1

26 pages, 9562 KiB  
Article
Hyperspectral Anomaly Detection with Auto-Encoder and Independent Target
by Shuhan Chen, Xiaorun Li and Yunfeng Yan
Remote Sens. 2023, 15(22), 5266; https://doi.org/10.3390/rs15225266 - 7 Nov 2023
Cited by 3 | Viewed by 3080
Abstract
As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performance is subject to their unbiased reconstruction [...] Read more.
As an unsupervised data representation neural network, auto-encoder (AE) has shown great potential in denoising, dimensionality reduction, and data reconstruction. Many AE-based background (BKG) modeling methods have been developed for hyperspectral anomaly detection (HAD). However, their performance is subject to their unbiased reconstruction of BKG and target pixels. This article presents a rather different low rank and sparse matrix decomposition (LRaSMD) method based on AE, named auto-encoder and independent target (AE-IT), for hyperspectral anomaly detection. First, the encoder weight matrix, obtained by a designed AE network, is utilized to construct a projector for generating a low-rank component in the encoder subspace. By adaptively and reasonably determining the number of neurons in the latent layer, the designed AE-based method can promote the reconstruction of BKG. Second, to ensure independence and representativeness, the component in the encoder orthogonal subspace is made into a sphere and followed by finding of unsupervised targets to construct an anomaly space. In order to mitigate the influence of noise on anomaly detection, sparse cardinality (SC) constraint is enforced on the component in the anomaly space for obtaining the sparse anomaly component. Finally, anomaly detector is constructed by combining Mahalanobi distance and multi-components, which include encoder component and sparse anomaly component, to detect anomalies. The experimental results demonstrate that AE-IT performs competitively compared to the LRaSMD-based models and AE-based approaches. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

14 pages, 3201 KiB  
Article
Mental Workload Classification Method Based on EEG Cross-Session Subspace Alignment
by Hongquan Qu, Mengyu Zhang and Liping Pang
Mathematics 2022, 10(11), 1875; https://doi.org/10.3390/math10111875 - 30 May 2022
Cited by 10 | Viewed by 2891
Abstract
Electroencephalogram (EEG) signals are sensitive to the level of Mental Workload (MW). However, the random non-stationarity of EEG signals will lead to low accuracy and a poor generalization ability for cross-session MW classification. To solve this problem of the different marginal distribution of [...] Read more.
Electroencephalogram (EEG) signals are sensitive to the level of Mental Workload (MW). However, the random non-stationarity of EEG signals will lead to low accuracy and a poor generalization ability for cross-session MW classification. To solve this problem of the different marginal distribution of EEG signals in different time periods, an MW classification method based on EEG Cross-Session Subspace Alignment (CSSA) is presented to identify the level of MW induced in visual manipulation tasks. The Independent Component Analysis (ICA) method is used to obtain the Independent Components (ICs) of labeled and unlabeled EEG signals. The energy features of ICs are extracted as source domains and target domains, respectively. The marginal distributions of source subspace base vectors are aligned with the target subspace base vectors based on the linear mapping. The Kullback–Leibler (KL) divergences between the two domains are calculated to select approximately similar transformed base vectors of source subspace. The energy features in all selected vectors are trained to build a new classifier using the Support Vector Machine (SVM). Then it can realize MW classification using the cross-session EEG signals, and has good classification accuracy. Full article
Show Figures

Figure 1

13 pages, 2998 KiB  
Communication
Adaptive Subspace Signal Detection in Structured Interference Plus Compound Gaussian Sea Clutter
by Zeyu Wang, Jun Liu, Yachao Li, Hongmeng Chen and Mugen Peng
Remote Sens. 2022, 14(9), 2274; https://doi.org/10.3390/rs14092274 - 8 May 2022
Cited by 8 | Viewed by 2491
Abstract
This paper discusses the problem of detecting subspace signals in structured interference plus compound Gaussian sea clutter with persymmetric structure. The sea clutter is represented by a compound Gaussian process wherein the texture obeys the inverse Gaussian distribution. The structured interference lies in [...] Read more.
This paper discusses the problem of detecting subspace signals in structured interference plus compound Gaussian sea clutter with persymmetric structure. The sea clutter is represented by a compound Gaussian process wherein the texture obeys the inverse Gaussian distribution. The structured interference lies in a known subspace, which is independent with the target signal subspace. By resorting to the two-step generalized likelihood ratio test, two-step Rao, and two-step Wald design criteria, three adaptive subspace signal detectors are proposed. Moreover, the constant false-alarm rate property of the proposed detectors is proved. The experimental results based on IPIX real sea clutter data and simulated data illustrate that the proposed detectors outperform their counterparts. Full article
(This article belongs to the Special Issue Target Detection and Information Extraction in Radar Images)
Show Figures

Graphical abstract

15 pages, 2797 KiB  
Article
A Suppression Method of Concentration Background Noise by Transductive Transfer Learning for a Metal Oxide Semiconductor-Based Electronic Nose
by Huixiang Liu, Qing Li, Zhiyong Li and Yu Gu
Sensors 2020, 20(7), 1913; https://doi.org/10.3390/s20071913 - 30 Mar 2020
Cited by 6 | Viewed by 3213
Abstract
Signal drift caused by sensors or environmental changes, which can be regarded as data distribution changes over time, is related to transductive transfer learning, and the data in the target domain is not labeled. We propose a method that learns a subspace with [...] Read more.
Signal drift caused by sensors or environmental changes, which can be regarded as data distribution changes over time, is related to transductive transfer learning, and the data in the target domain is not labeled. We propose a method that learns a subspace with maximum independence of the concentration features (MICF) according to the Hilbert-Schmidt Independence Criterion (HSIC), which reduces the inter-concentration discrepancy of distributions. Then, we use Iterative Fisher Linear Discriminant (IFLD) to extract the signal features by reducing the divergence within classes and increasing the divergence among classes, which helps to prevent inconsistent ratios of different types of samples among the domains. The effectiveness of MICF and IFLD was verified by three sets of experiments using sensors in real world conditions, along with experiments conducted in the authors’ laboratory. The proposed method achieved an accuracy of 76.17%, which was better than any of the existing methods that publish their data on a publicly available dataset (the Gas Sensor Drift Dataset). It was found that the MICF-IFLD was simple and effective, reduced interferences, and deftly managed tasks of transfer classification. Full article
(This article belongs to the Collection Gas Sensors)
Show Figures

Figure 1

Back to TopTop