Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = in-silico lesions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6720 KiB  
Article
Adapting Neural-Based Models for Position Error Compensation in Robotic Catheter Systems
by Toluwanimi O. Akinyemi, Olatunji M. Omisore, Xingyu Chen, Wenke Duan, Wenjing Du, Guanlin Yi and Lei Wang
Appl. Sci. 2022, 12(21), 10936; https://doi.org/10.3390/app122110936 - 28 Oct 2022
Cited by 11 | Viewed by 3174
Abstract
Robotic catheter systems with master–slave designs are employed for teleoperated navigation of flexible endovascular tools for treating calcified lesions. Despite improved tool manipulation techniques, patient safety and lowering operative risks remain top priorities. Therefore, minimizing undesirable drifts and imprecise navigation of flexible tools [...] Read more.
Robotic catheter systems with master–slave designs are employed for teleoperated navigation of flexible endovascular tools for treating calcified lesions. Despite improved tool manipulation techniques, patient safety and lowering operative risks remain top priorities. Therefore, minimizing undesirable drifts and imprecise navigation of flexible tools during intravascular catheterization is essential. In the current master–slave designs, finite displacement lag between position command and actual navigation action at the slave device affects smooth catheterization. In this study, we designed and developed a compact 2-DOF robotic catheter system and characterized the influence of displacement step values, velocity, and motion gap on the position error at the slave device. For uniform and varying motion commands from the master platform, the results indicate that the overall position error increases with the distance traveled and the displacement step values, respectively. Hence, we proposed using recurrent neural networks—long short-term memory and gated recurrent unit controllers to predict the slave robot’s position and appropriate compensation value per translation step. An analysis of in-silico studies with CoppeliaSim showed that the neural-based controllers can ensure uniform motion mapping between the master–slave devices. Furthermore, we implemented the models within the RCS for a catheterization length of 120 mm. The result demonstrates that the controllers suitably aid the slave robot’s stepwise displacement. Thus, the neural-based controllers help match the translational motion and precise tool navigation by the slave robotic device. Therefore, the neural-based controllers could contribute to alleviating patients’ safety concerns during robotic interventions. Full article
(This article belongs to the Topic Designs and Drive Control of Electromechanical Machines)
Show Figures

Figure 1

13 pages, 956 KiB  
Article
In-Silico Modeling to Compare Radiofrequency-Induced Thermal Lesions Created on Myocardium and Thigh Muscle
by Juan J. Pérez, Enrique Berjano and Ana González-Suárez
Bioengineering 2022, 9(7), 329; https://doi.org/10.3390/bioengineering9070329 - 19 Jul 2022
Cited by 2 | Viewed by 1987
Abstract
Beating heart (BH) and thigh muscle (TM) are two pre-clinical models aimed at studying the lesion sizes created by radiofrequency (RF) catheters in cardiac ablation. Previous experimental results have shown that thermal lesions created in the TM are slightly bigger than in the [...] Read more.
Beating heart (BH) and thigh muscle (TM) are two pre-clinical models aimed at studying the lesion sizes created by radiofrequency (RF) catheters in cardiac ablation. Previous experimental results have shown that thermal lesions created in the TM are slightly bigger than in the BH. Our objective was to use in-silico modeling to elucidate some of the causes of this difference. In-silico RF ablation models were created using the Arrhenius function to estimate lesion size under different energy settings (25 W/20 s, 50 W/6 s and 90 W/4 s) and parallel, 45° and perpendicular catheter positions. The models consisted of homogeneous tissue: myocardium in the BH model and striated muscle in the TM model. The computer results showed that the lesion sizes were generally bigger in the TM model and the differences depended on the energy setting, with hardly any differences at 90 W/4 s but with differences of 1 mm in depth and 1.5 m in width at 25 W/20 s. The higher electrical conductivity of striated muscle (0.446 S/m) than that of the myocardium (0.281 S/m) is possibly one of the causes of the higher percentage of RF energy delivered to the tissue in the TM model, with differences between models of 2–5% at 90 W/4 s, ~9% at 50 W/6 s and ~10% at 25 W/20 s. Proximity to the air–blood interface (just 2 cm from the tissue surface) artificially created in the TM model to emulate the cardiac cavity had little effect on lesion size. In conclusion, the TM-based experimental model creates fairly similar-sized lesions to the BH model, especially in high-power short-duration ablations (50 W/6 s and 90 W/4 s). Our computer results suggest that the higher electrical conductivity of striated muscle could be one of the causes of the slightly larger lesions in the TM model. Full article
Show Figures

Figure 1

16 pages, 1026 KiB  
Article
Neuromodulatory Control and Language Recovery in Bilingual Aphasia: An Active Inference Approach
by Noor Sajid, Karl J. Friston, Justyna O. Ekert, Cathy J. Price and David W. Green
Behav. Sci. 2020, 10(10), 161; https://doi.org/10.3390/bs10100161 - 21 Oct 2020
Cited by 12 | Viewed by 4711
Abstract
Understanding the aetiology of the diverse recovery patterns in bilingual aphasia is a theoretical challenge with implications for treatment. Loss of control over intact language networks provides a parsimonious starting point that can be tested using in-silico lesions. We simulated a complex recovery [...] Read more.
Understanding the aetiology of the diverse recovery patterns in bilingual aphasia is a theoretical challenge with implications for treatment. Loss of control over intact language networks provides a parsimonious starting point that can be tested using in-silico lesions. We simulated a complex recovery pattern (alternate antagonism and paradoxical translation) to test the hypothesis—from an established hierarchical control model—that loss of control was mediated by constraints on neuromodulatory resources. We used active (Bayesian) inference to simulate a selective loss of sensory precision; i.e., confidence in the causes of sensations. This in-silico lesion altered the precision of beliefs about task relevant states, including appropriate actions, and reproduced exactly the recovery pattern of interest. As sensory precision has been linked to acetylcholine release, these simulations endorse the conjecture that loss of neuromodulatory control can explain this atypical recovery pattern. We discuss the relevance of this finding for other recovery patterns. Full article
(This article belongs to the Special Issue Bilingual Aphasia)
Show Figures

Figure 1

11 pages, 2045 KiB  
Article
Association of Genetic Variation at AQP4 Locus with Vascular Depression
by Anna L. Westermair, Matthias Munz, Anja Schaich, Stefan Nitsche, Bastian Willenborg, Loreto M. Muñoz Venegas, Christina Willenborg, Heribert Schunkert, Ulrich Schweiger and Jeanette Erdmann
Biomolecules 2018, 8(4), 164; https://doi.org/10.3390/biom8040164 - 5 Dec 2018
Cited by 15 | Viewed by 6206
Abstract
Despite its substantial clinical importance, specific genetic variants associated with depression have not yet been identified. We sought to identify genetic variants associated with depression by (a) focusing on a more homogenous subsample (vascular depression) and (b) applying a three-stage approach. First, we [...] Read more.
Despite its substantial clinical importance, specific genetic variants associated with depression have not yet been identified. We sought to identify genetic variants associated with depression by (a) focusing on a more homogenous subsample (vascular depression) and (b) applying a three-stage approach. First, we contacted 730 participants with a confirmed atherosclerotic disease (coronary artery disease) from a population-based study population (German Myocardial Infarction Family Study IV) for psychiatric assessment with the Mini International Neuropsychiatric Interview. Second, we genotyped these patients using genome-wide single nucleotide polymorphism (SNP) arrays. Third, we characterized the SNP via in-silico analysis. The final sample consisted of 342 patients (78.3% male, age = 63.2 ± 9.9 years), 22.8% with a severe depressive disorder. Variant rs528732638 on chromosome 18q11.2 was a genome-wide significant variant and was associated with 3.6-fold increase in the odds of lifetime depression. The locus belongs to a linkage disequilibrium block showing expression quantitative trait loci effects on three putative cis-regulated genes, including the aquaporin 4 (AQP4) locus. AQP4 is already known to mediate the formation of ischemic edema in the brain and heart, increasing the size and extent of resulting lesions. Our findings indicate that AQP4 may also play a role in the etiopathology of vascular depression. Full article
(This article belongs to the Special Issue Biomolecules for Translational Approaches in Cardiology)
Show Figures

Figure 1

Back to TopTop