Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = in-ear PPG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3304 KiB  
Article
Evaluation of In-Ear and Fingertip-Based Photoplethysmography Sensors for Measuring Cardiac Vagal Tone Relevant Heart Rate Variability Parameters
by Ankit Parikh, Gwyn Lewis, Hamid GholamHosseini, Usman Rashid, David Rice and Faisal Almesfer
Sensors 2025, 25(5), 1485; https://doi.org/10.3390/s25051485 - 28 Feb 2025
Viewed by 1343
Abstract
This paper presents a study undertaken to evaluate the sensor systems that were shortlisted to be used in the development of a portable respiratory-gated transcutaneous auricular vagus nerve stimulation (taVNS) system. To date, all published studies assessing respiratory-gated taVNS have been performed in [...] Read more.
This paper presents a study undertaken to evaluate the sensor systems that were shortlisted to be used in the development of a portable respiratory-gated transcutaneous auricular vagus nerve stimulation (taVNS) system. To date, all published studies assessing respiratory-gated taVNS have been performed in controlled laboratory environments. This limitation arises from the reliance on non-portable sensing equipment, which poses significant logistical challenges. Therefore, we recognised a need to develop a portable sensor system for future research, enabling participants to perform respiratory-gated stimulation conveniently from their homes. This study aimed to measure the accuracy of an in-ear and a fingertip-based photoplethysmography (PPG) sensor in measuring cardiac vagal tone relevant heart rate variability (HRV) parameters of root mean square of successive R-R interval differences (RMSSDs) and the high-frequency (HF) component of HRV. Thirty healthy participants wore the prototype sensor equipment and the gold standard electrocardiogram (ECG) equipment to record beat-to-beat intervals simultaneously during 10 min of normal breathing and 10 min of deep slow breathing (DSB). Additionally, a stretch sensor was evaluated to measure its accuracy in detecting exhalation when compared to the gold standard sensor. We used Bland–Altman analysis to establish the agreement between the prototypes and the ECG system. Intraclass correlation coefficients (ICCs) were calculated to establish consistency between the prototypes and the ECG system. For the stretch sensor, the true positive rate (TPR), false positive rate (FPR), and false negative rate (FNR) were calculated. Results indicate that while ICC values were generally good to excellent, only the fingertip-based sensor had an acceptable level of agreement in measuring RMSSDs during both breathing phases. Only the fingertip-based sensor had an acceptable level of agreement during normal breathing in measuring HF-HRV. The study highlights that a high correlation between sensors does not necessarily translate into a high level of agreement. In the case of the stretch sensor, it had an acceptable level of accuracy with a mean TPR of 85% during normal breathing and 95% during DSB. The results show that the fingertip-based sensor and the stretch sensor had acceptable levels of accuracy for use in the development of the respiratory-gated taVNS system. Full article
(This article belongs to the Special Issue Multiple Sensor Signal and Image Processing for Clinical Application)
Show Figures

Figure 1

10 pages, 424 KiB  
Article
Hearables: In-Ear Multimodal Data Fusion for Robust Heart Rate Estimation
by Marek Żyliński, Amir Nassibi, Edoardo Occhipinti, Adil Malik, Matteo Bermond, Harry J. Davies and Danilo P. Mandic
BioMedInformatics 2024, 4(2), 911-920; https://doi.org/10.3390/biomedinformatics4020051 - 1 Apr 2024
Cited by 2 | Viewed by 2092
Abstract
Background: Ambulatory heart rate (HR) monitors that acquire electrocardiogram (ECG) or/and photoplethysmographm (PPG) signals from the torso, wrists, or ears are notably less accurate in tasks associated with high levels of movement compared to clinical measurements. However, a reliable estimation of [...] Read more.
Background: Ambulatory heart rate (HR) monitors that acquire electrocardiogram (ECG) or/and photoplethysmographm (PPG) signals from the torso, wrists, or ears are notably less accurate in tasks associated with high levels of movement compared to clinical measurements. However, a reliable estimation of HR can be obtained through data fusion from different sensors. These methods are especially suitable for multimodal hearable devices, where heart rate can be tracked from different modalities, including electrical ECG, optical PPG, and sounds (heart tones). Combined information from different modalities can compensate for single source limitations. Methods: In this paper, we evaluate the possible application of data fusion methods in hearables. We assess data fusion for heart rate estimation from simultaneous in-ear ECG and in-ear PPG, recorded on ten subjects while performing 5-min sitting and walking tasks. Results: Our findings show that data fusion methods provide a similar level of mean absolute error as the best single-source heart rate estimation but with much lower intra-subject variability, especially during walking activities. Conclusion: We conclude that data fusion methods provide more robust HR estimation than a single cardiovascular signal. These methods can enhance the performance of wearable devices, especially multimodal hearables, in heart rate tracking during physical activity. Full article
Show Figures

Figure 1

24 pages, 2213 KiB  
Review
The Principles of Hearable Photoplethysmography Analysis and Applications in Physiological Monitoring–A Review
by Khalida Azudin, Kok Beng Gan, Rosmina Jaafar and Mohd Hasni Ja’afar
Sensors 2023, 23(14), 6484; https://doi.org/10.3390/s23146484 - 18 Jul 2023
Cited by 9 | Viewed by 4943
Abstract
Not long ago, hearables paved the way for biosensing, fitness, and healthcare monitoring. Smart earbuds today are not only producing sound but also monitoring vital signs. Reliable determination of cardiovascular and pulmonary system information can explore the use of hearables for physiological monitoring. [...] Read more.
Not long ago, hearables paved the way for biosensing, fitness, and healthcare monitoring. Smart earbuds today are not only producing sound but also monitoring vital signs. Reliable determination of cardiovascular and pulmonary system information can explore the use of hearables for physiological monitoring. Recent research shows that photoplethysmography (PPG) signals not only contain details on oxygen saturation level (SPO2) but also carry more physiological information including pulse rate, respiration rate, blood pressure, and arterial-related information. The analysis of the PPG signal from the ear has proven to be reliable and accurate in the research setting. (1) Background: The present integrative review explores the existing literature on an in-ear PPG signal and its application. This review aims to identify the current technology and usage of in-ear PPG and existing evidence on in-ear PPG in physiological monitoring. This review also analyzes in-ear (PPG) measurement configuration and principle, waveform characteristics, processing technology, and feature extraction characteristics. (2) Methods: We performed a comprehensive search to discover relevant in-ear PPG articles published until December 2022. The following electronic databases: Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, Scopus, Web of Science, and PubMed were utilized to conduct the studies addressing the evidence of in-ear PPG in physiological monitoring. (3) Results: Fourteen studies were identified but nine studies were finalized. Eight studies were on different principles and configurations of hearable PPG, and eight studies were on processing technology and feature extraction and its evidence in in-ear physiological monitoring. We also highlighted the limitations and challenges of using in-ear PPG in physiological monitoring. (4) Conclusions: The available evidence has revealed the future of in-ear PPG in physiological monitoring. We have also analyzed the potential limitation and challenges that in-ear PPG will face in processing the signal. Full article
(This article belongs to the Special Issue Advances in Light- and Sound-Based Techniques in Biomedicine)
Show Figures

Figure 1

14 pages, 8451 KiB  
Article
An In-Ear PPG-Based Blood Glucose Monitor: A Proof-of-Concept Study
by Ghena Hammour and Danilo P. Mandic
Sensors 2023, 23(6), 3319; https://doi.org/10.3390/s23063319 - 21 Mar 2023
Cited by 21 | Viewed by 15923
Abstract
Monitoring diabetes saves lives. To this end, we introduce a novel, unobtrusive, and readily deployable in-ear device for the continuous and non-invasive measurement of blood glucose levels (BGLs). The device is equipped with a low-cost commercially available pulse oximeter whose infrared wavelength (880 [...] Read more.
Monitoring diabetes saves lives. To this end, we introduce a novel, unobtrusive, and readily deployable in-ear device for the continuous and non-invasive measurement of blood glucose levels (BGLs). The device is equipped with a low-cost commercially available pulse oximeter whose infrared wavelength (880 nm) is used for the acquisition of photoplethysmography (PPG). For rigor, we considered a full range of diabetic conditions (non-diabetic, pre-diabetic, type I diabetic, and type II diabetic). Recordings spanned nine different days, starting in the morning while fasting, up to a minimum of a two-hour period after eating a carbohydrate-rich breakfast. The BGLs from PPG were estimated using a suite of regression-based machine learning models, which were trained on characteristic features of PPG cycles pertaining to high and low BGLs. The analysis shows that, as desired, an average of 82% of the BGLs estimated from PPG lie in region A of the Clarke error grid (CEG) plot, with 100% of the estimated BGLs in the clinically acceptable CEG regions A and B. These results demonstrate the potential of the ear canal as a site for non-invasive blood glucose monitoring. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

17 pages, 2624 KiB  
Perspective
Photoplethysmography in Normal and Pathological Sleep
by Ramona S. Vulcan, Stephanie André and Marie Bruyneel
Sensors 2021, 21(9), 2928; https://doi.org/10.3390/s21092928 - 22 Apr 2021
Cited by 22 | Viewed by 5253
Abstract
This article presents an overview of the advancements that have been made in the use of photoplethysmography (PPG) for unobtrusive sleep studies. PPG is included in the quickly evolving and very popular landscape of wearables but has specific interesting properties, particularly the ability [...] Read more.
This article presents an overview of the advancements that have been made in the use of photoplethysmography (PPG) for unobtrusive sleep studies. PPG is included in the quickly evolving and very popular landscape of wearables but has specific interesting properties, particularly the ability to capture the modulation of the autonomic nervous system during sleep. Recent advances have been made in PPG signal acquisition and processing, including coupling it with accelerometry in order to construct hypnograms in normal and pathologic sleep and also to detect sleep-disordered breathing (SDB). The limitations of PPG (e.g., oxymetry signal failure, motion artefacts, signal processing) are reviewed as well as technical solutions to overcome these issues. The potential medical applications of PPG are numerous, including home-based detection of SDB (for triage purposes), and long-term monitoring of insomnia, circadian rhythm sleep disorders (to assess treatment effects), and treated SDB (to ensure disease control). New contact sensor combinations to improve future wearables seem promising, particularly tools that allow for the assessment of brain activity. In this way, in-ear EEG combined with PPG and actigraphy could be an interesting focus for future research. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

16 pages, 2460 KiB  
Article
In-Ear Pulse Rate Measurement: A Valid Alternative to Heart Rate Derived from Electrocardiography?
by Stefanie Passler, Niklas Müller and Veit Senner
Sensors 2019, 19(17), 3641; https://doi.org/10.3390/s19173641 - 21 Aug 2019
Cited by 44 | Viewed by 8602
Abstract
Heart rate measurement has become one of the most widely used methods of monitoring the intensity of physical activity. The purpose of this study was to assess whether in-ear photoplethysmographic (PPG) pulse rate (PR) measurement devices represent a valid alternative to heart rate [...] Read more.
Heart rate measurement has become one of the most widely used methods of monitoring the intensity of physical activity. The purpose of this study was to assess whether in-ear photoplethysmographic (PPG) pulse rate (PR) measurement devices represent a valid alternative to heart rate derived from electrocardiography (ECG), which is considered a gold standard. Twenty subjects (6 women, 14 men) completed one trial of graded cycling under laboratory conditions. In the trial, PR was recorded by two commercially available in-ear devices, the Dash Pro and the Cosinuss°One. They were compared to HR measured by a Bodyguard2 ECG. Validity of the in-ear PR measurement devices was tested by ANOVA, mean absolute percentage errors (MAPE), intra-class correlation coefficient (ICC), and Bland–Altman plots. Both devices achieved a MAPE ≤5%. Despite excellent to good levels of agreement, Bland–Altman plots showed that both in-ear devices tend to slightly underestimate the ECG’s HR values. It may be concluded that in-ear PPG PR measurement is a promising technique that shows accurate but imprecise results under controlled conditions. However, PPG PR measurement in the ear is sensitive to motion artefacts. Thus, accuracy and precision of the measured PR depend highly on measurement site, stress situation, and exercise. Full article
(This article belongs to the Special Issue Wearable and Nearable Biosensors and Systems for Healthcare)
Show Figures

Figure 1

Back to TopTop