Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = in situ hydrogel-forming powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 13877 KiB  
Article
A Self-Gelling Powder Based on Polyacrylic Acid/Polyethyleneimine/Polyethylene Glycol for High-Performance Hemostasis and Antibacterial Activity
by Jia Li, Shu Li, Aozhen Zhong, Jun Xing, Ling Li, Cai Wang and Min Zheng
Polymers 2024, 16(24), 3516; https://doi.org/10.3390/polym16243516 - 18 Dec 2024
Viewed by 1145
Abstract
Powder-based hemostatic materials have offered unprecedented opportunities for the effective sealing and repair of irregularly shaped wounds and high-pressure, noncompressible arterial bleeding wounds caused by surgeries, traffic accidents, and wartime injuries. However, inadequate adhesion to bleeding wounds and poor hemostasis in biological tissues [...] Read more.
Powder-based hemostatic materials have offered unprecedented opportunities for the effective sealing and repair of irregularly shaped wounds and high-pressure, noncompressible arterial bleeding wounds caused by surgeries, traffic accidents, and wartime injuries. However, inadequate adhesion to bleeding wounds and poor hemostasis in biological tissues remains challenging. Herein, we report a self-gelling hemostatic powder based on polyacrylic acid/polyethyleneimine/polyethylene glycol (named PPG) for rapid hemostasis and effective antibacterial ability. When deposited on bleeding wounds, PPG powder can absorb interfacial liquid and rapidly swell into a physically cross-linked hydrogel in situ within 2 s to form a pressure-resistant physical barrier. Furthermore, the in vivo and in vitro results indicate that, as an effective sealant, the PPG powder possesses ease of use, excellent hemocompatibility, strong antibacterial abilities, and superior blood clotting abilities. The effective hemostatic sealing capability of the PPG powder is demonstrated in a variety of injury models in rats and rabbits. All of these factors show that, with its superior wound treatment abilities, PPG powder is a profound biomaterial for surgical applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

18 pages, 5340 KiB  
Article
A Novel Three-Polysaccharide Blend In Situ Gelling Powder for Wound Healing Applications
by Chiara Amante, Tiziana Esposito, Pasquale Del Gaudio, Veronica Di Sarno, Amalia Porta, Alessandra Tosco, Paola Russo, Luigi Nicolais and Rita P. Aquino
Pharmaceutics 2021, 13(10), 1680; https://doi.org/10.3390/pharmaceutics13101680 - 14 Oct 2021
Cited by 14 | Viewed by 2919
Abstract
In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form of an in situ forming hydrogel, intended for wound repair applications, have been successfully developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the drug, enhance [...] Read more.
In this paper, alginate/pectin and alginate/pectin/chitosan blend particles, in the form of an in situ forming hydrogel, intended for wound repair applications, have been successfully developed. Particles have been used to encapsulate doxycycline in order to control the delivery of the drug, enhance its antimicrobial properties, and the ability to inhibit host matrix metalloproteinases. The presence of chitosan in the particles strongly influenced their size, morphology, and fluid uptake properties, as well as drug encapsulation efficiency and release, due to both chemical interactions between the polymers in the blend and interactions with the drug demonstrated by FTIR studies. In vitro antimicrobial studies highlighted an increase in antibacterial activity related to the chitosan amount in the powders. Moreover, in situ gelling powders are able to induce a higher release of IL-8 from the human keratinocytes that could stimulate the wound healing process in difficult-healing. Interestingly, doxycycline-loaded particles are able to increase drug activity against MMPs, with good activity against MMP-9 even at 0.5 μg/mL over 72 h. Such results suggest that such powders rich in chitosan could be a promising dressing for exudating wounds. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Graphical abstract

18 pages, 5429 KiB  
Article
In Situ Hydrogel-Forming/Nitric Oxide-Releasing Wound Dressing for Enhanced Antibacterial Activity and Healing in Mice with Infected Wounds
by Juho Lee, Shwe Phyu Hlaing, Jiafu Cao, Nurhasni Hasan, Hye-Jin Ahn, Ki-Won Song and Jin-Wook Yoo
Pharmaceutics 2019, 11(10), 496; https://doi.org/10.3390/pharmaceutics11100496 - 27 Sep 2019
Cited by 63 | Viewed by 6749
Abstract
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ [...] Read more.
The eradication of bacteria from wound sites and promotion of healing are essential for treating infected wounds. Nitric oxide (NO) is desirable for these purposes due to its ability to accelerate wound healing and its broad-spectrum antibacterial effects. We developed an in situ hydrogel-forming/NO-releasing powder dressing (NO/GP), which is a powder during storage and forms a hydrogel when applied to wounds, as a novel NO-releasing formulation to treat infected wounds. An NO/GP fine powder (51.5 μm) was fabricated by blending and micronizing S-nitrosoglutathione (GSNO), alginate, pectin, and polyethylene glycol (PEG). NO/GP remained stable for more than four months when stored at 4 or 37 °C. When applied to wounds, NO/GP absorbed wound fluid and immediately converted to a hydrogel. Additionally, wound fluid triggered a NO release from NO/GP for more than 18 h. The rheological properties of hydrogel-transformed NO/GP indicated that NO/GP possesses similar adhesive properties to marketed products (Vaseline). NO/GP resulted in a 6-log reduction in colony forming units (CFUs) of methicillin resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa, which are representative drug-resistant gram-positive and -negative bacteria, respectively. The promotion of wound healing by NO/GP was demonstrated in mice with full-thickness wounds challenged with MRSA and P. aeruginosa. Thus, NO/GP is a promising formulation for the treatment of infected wounds. Full article
(This article belongs to the Special Issue Semisolid Dosage)
Show Figures

Graphical abstract

27 pages, 16029 KiB  
Article
Transcription of Nanofibrous Cerium Phosphate Using a pH-Sensitive Lipodipeptide Hydrogel Template
by Mario Llusar, Beatriu Escuder, Juan De Dios López-Castro, Susana Trasobares and Guillermo Monrós
Gels 2017, 3(2), 23; https://doi.org/10.3390/gels3020023 - 10 Jun 2017
Cited by 12 | Viewed by 6230
Abstract
A novel and simple transcription strategy has been designed for the template-synthesis of CePO4·xH2O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to [...] Read more.
A novel and simple transcription strategy has been designed for the template-synthesis of CePO4·xH2O nanofibers having an improved nanofibrous morphology using a pH-sensitive nanofibrous hydrogel (glycine-alanine lipodipeptide) as structure-directing scaffold. The phosphorylated hydrogel was employed as a template to direct the mineralization of high aspect ratio nanofibrous cerium phosphate, which in-situ formed by diffusion of aqueous CeCl3 and subsequent drying (60 °C) and annealing treatments (250, 600 and 900 °C). Dried xerogels and annealed CePO4 powders were characterized by conventional thermal and thermogravimetric analysis (DTA/TG), and Wide-Angle X-ray powder diffraction (WAXD) and X-ray powder diffraction (XRD) techniques. A molecular packing model for the formation of the fibrous xerogel template was proposed, in accordance with results from Fourier-Transformed Infrarred (FTIR) and WAXD measurements. The morphology, crystalline structure and composition of CePO4 nanofibers were characterized by electron microscopy techniques (Field-Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy/High-Resolution Transmission Electron Microscopy (TEM/HRTEM), and Scanning Transmission Electron Microscopy working in High Angle Annular Dark-Field (STEM-HAADF)) with associated X-ray energy-dispersive detector (EDS) and Scanning Transmission Electron Microscopy-Electron Energy Loss (STEM-EELS) spectroscopies. Noteworthy, this templating approach successfully led to the formation of CePO4·H2O nanofibrous bundles of rather co-aligned and elongated nanofibers (10–20 nm thick and up to ca. 1 μm long). The formed nanofibers consisted of hexagonal (P6222) CePO4 nanocrystals (at 60 and 250 °C), with a better-grown and more homogeneous fibrous morphology with respect to a reference CePO4 prepared under similar (non-templated) conditions, and transformed into nanofibrous monoclinic monazite (P21/n) around 600 °C. The nanofibrous morphology was highly preserved after annealing at 900 °C under N2, although collapsed under air conditions. The nanofibrous CePO4 (as-prepared hexagonal and 900 °C-annealed monoclinic) exhibited an enhanced UV photo-luminescent emission with respect to non-fibrous homologues. Full article
(This article belongs to the Special Issue Gels as Templates for Transcription)
Show Figures

Graphical abstract

Back to TopTop