Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = impinging jet crystallization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18418 KiB  
Article
Investigation on Phase Transition and Collection Characteristics of Non-Spherical Ice Crystals with Eulerian and Lagrangian Methods
by Shengfang Lu, Weijian Chen, Dalin Zhang, Zihao Zhang and Guangya Zhu
Aerospace 2024, 11(4), 299; https://doi.org/10.3390/aerospace11040299 - 11 Apr 2024
Viewed by 1469
Abstract
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this paper, two different numerical calculation methods, the Eulerian method and the Lagrangian method, were used to evaluate the dynamics, mass transfer, heat transfer, phase transition and [...] Read more.
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this paper, two different numerical calculation methods, the Eulerian method and the Lagrangian method, were used to evaluate the dynamics, mass transfer, heat transfer, phase transition and trajectory of ice crystals. Then, we studied the effects of initial diameter, initial sphericity, initial temperature of ice crystal, and relative humidity of airflow on the phase transition and collection characteristics of ice crystal particles. Results indicate that the non-spherical characteristics of ice crystals have a significant impact on their impingement limits and collection characteristics. The collection coefficient of unmelted ice crystals is positively correlated with the initial particle diameter and sphericity, and negatively correlated with the initial particle temperature and the relative humidity of airflow. The melting rate of ice crystal particles on the impact surface increases exponentially with the initial diameter of the particles, linearly increases with the relative humidity of the airflow and initial temperature of the particles, and exponentially decreases with the sphericity of the particles. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume III))
Show Figures

Figure 1

18 pages, 1712 KiB  
Article
Three-Dimensional Trajectory and Impingement Simulation of Ice Crystals Considering State Changes on the Rotor Blade of an Axial Fan
by Koichiro Hirose, Koji Fukudome, Hiroya Mamori and Makoto Yamamoto
Aerospace 2024, 11(1), 2; https://doi.org/10.3390/aerospace11010002 - 19 Dec 2023
Cited by 3 | Viewed by 1776
Abstract
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicating a significant difference in impinging [...] Read more.
Ice crystal icing occurs in jet engine compressors, which can severely degrade jet engine performance. In this study, we developed an ice crystal trajectory simulation, considering the state changes of ice crystals with a forced convection model, indicating a significant difference in impinging ice crystal content on the blade for tiny ice crystals. Then, ice crystal trajectory simulations were performed for the rotor blade of an axial fan to investigate the effects of ice crystal size and relative humidity on collision characteristics. The results indicate that the surrounding air affects the composition of tiny ice crystals before collision, and the flight time until impingement on the rotor blade varies significantly depending on the span position. Among them, ice crystals with a diameter of 50 μm impinge with water content that is most likely to adhere to the blade. Three-dimensional simulation results show that many ice crystals impinge not only on the leading edge, where icing occurs as revealed by the two-dimensional simulations but also on the trailing edge of the hub side. This study emphasizes the importance of evaluating the three-dimensional impingement position and water content in the prediction of ice crystal icing. Full article
(This article belongs to the Special Issue Deicing and Anti-Icing of Aircraft (Volume III))
Show Figures

Figure 1

19 pages, 5006 KiB  
Article
Investigation on the Effect of Mesomixing on Crystal Quality during Antisolvent Crystallization of Nd2(SO4)3·8H2O
by Tinjombo Octavious Baloyi, Jemitias Chivavava and Alison Emslie Lewis
Metals 2023, 13(8), 1378; https://doi.org/10.3390/met13081378 - 31 Jul 2023
Viewed by 1460
Abstract
Rare earth elements (REEs) are essential for permanent magnets that are vital for wind turbines and electric vehicles motors (EV), and are also used in a range of high-tech devices such as smartphones, digital cameras, and electronic displays. Nickel metal hydride (NiMH) batteries [...] Read more.
Rare earth elements (REEs) are essential for permanent magnets that are vital for wind turbines and electric vehicles motors (EV), and are also used in a range of high-tech devices such as smartphones, digital cameras, and electronic displays. Nickel metal hydride (NiMH) batteries have been identified as a potential source due to their short lifespans and an anticipated boom in the production of EV. The aim of this study was to investigate the effect of mesomixing on crystal quality in a non-confined impinging jet mixer (NCIJM) during antisolvent crystallization of 3.2 g/L Nd2(SO4)3 from a synthetic leach solution of NiMH battery using ethanol at an O/A ratio of 1.1. The jet streams were supplied at a Reynolds number (Re) between 7500 and 15,000. The product slurry was allowed to further crystallize in a stirred batch crystallizer at a Re of 13,000 for 45 s. An average yield of 90% was achieved. Laser diffraction and scanning electron microscopy (SEM) were used for size analysis. The initial results were inconclusive due to the secondary mixing effect in the stirred batch crystallizer. Therefore, the experiments were repeated, and samples were collected immediately after mixing in the NCIJM onto a porous grid placed on a high absorbance filter paper to abruptly halt crystallization. The samples were analysed using a transmission electron microscope (TEM), and the acquired images were processed using ImageJ to obtain crystal size distributions (CSDs). It was found that the enhanced mesomixing conditions resulted in smaller crystal sizes and narrower CSDs. This was because the nucleation rate was found to be mass-transfer-limited, such that higher mesomixing intensities promoted the nucleation rate from 6 × 1012 to 5 × 1013 m−3 s−1 and, therefore, favoured the formation of smaller crystals. In parallel, intensified mesomixing resulted in uniform distribution of the supersaturation and, hence, narrowed the CSDs. Full article
(This article belongs to the Section Extractive Metallurgy)
Show Figures

Figure 1

19 pages, 5458 KiB  
Article
Thermal Visualization and Performance Analysis in a Channel Installing Transverse Baffles with Square Wings
by Smith Eiamsa-Ard, Arnut Phila, Khwanchit Wongcharee, Varesa Chuwattanakul, Monsak Pimsarn, Naoki Maruyama and Masafumi Hirota
Energies 2022, 15(22), 8736; https://doi.org/10.3390/en15228736 - 20 Nov 2022
Cited by 1 | Viewed by 2094
Abstract
The experimental examination of local heat transfer, thermal intensification, friction factors, and thermal performance factors (TPF) in a rectangular channel with square-winged transverse baffles (SW-TB) are presented in this paper. The purpose of this study is to modify the typical transverse baffles (TB) [...] Read more.
The experimental examination of local heat transfer, thermal intensification, friction factors, and thermal performance factors (TPF) in a rectangular channel with square-winged transverse baffles (SW-TB) are presented in this paper. The purpose of this study is to modify the typical transverse baffles (TB) into square-winged transverse baffles (SW-TB) in order to improve the thermal performance and heat transfer rate of the channel. The effects of SW-TBs with various wing attack angles and Reynolds numbers on the heat transfer performance characteristics were examined using a thermochromic liquid crystal sheet. In the experiments, the SW-TBs were attached to the bottom wall of the channel, which had an aspect ratio (W:H) of 3.75:1. The SW-TBs had a width (w) of 150 mm, a square perforated cross-sectional area (a × b) of 8 × 8 mm2, and attack angles (θ) of 0° (solid transverse-baffle), 22.5°, 45°, 67.5°, and 90°. The bottom wall of the channel was evenly heated, while the other walls were insulated. The temperature contours on the heated surface were plotted using temperatures obtained through using the thermochromic liquid crystal (TLC) image-processing method. Experimental results revealed that the SW-TBs created multiple impinging jets, apart from the recirculation. At the proper attack angles (θ = 22.5° and 45°), the SW-TBs offered greater heat transfer rates and caused lower friction losses, resulting in higher TPFs than the solid transverse baffles. In the current work, channels where the SW-TBs display a θ = 45° presented the greatest TPF, as high as 1.26. The multiple impinging jets issuing by the SW-TBs suppressed the size of the recirculation flow and allowed better contact between the fluid flow and channel wall. Full article
(This article belongs to the Special Issue New Challenges in Heat Transfer Enhancement)
Show Figures

Graphical abstract

20 pages, 9905 KiB  
Article
Errors Incurred in Local Convective Heat Transfer Coefficients Obtained through Transient One-Dimensional Semi-Infinite Conduction Modeling: A Computational Heat Transfer Study
by Prashant Singh
Energies 2022, 15(19), 7001; https://doi.org/10.3390/en15197001 - 23 Sep 2022
Cited by 3 | Viewed by 1860
Abstract
In typical turbulent flow problems, detailed heat transfer coefficient (h) maps obtained through short-duration experiments are based on inverse heat transfer methods that take the wall temperatures measured via liquid crystals or infrared thermography as input, and an error minimization routine is adopted [...] Read more.
In typical turbulent flow problems, detailed heat transfer coefficient (h) maps obtained through short-duration experiments are based on inverse heat transfer methods that take the wall temperatures measured via liquid crystals or infrared thermography as input, and an error minimization routine is adopted to determine the best value of h that satisfies the wall temperature temporal evolution under a certain change in fluid temperature. A common practice involves modeling the solid as a one-dimensional semi-infinite medium by selecting the solid material that has low thermal conductivity and low thermal diffusivity. However, in certain flow scenarios, the neglection of the lateral heat diffusion may lead to significant errors in the deduced h values. It is imperative to understand the reasons behind large errors that may be incurred by using the 1D heat conduction assumption in order to accurately determine high-resolution h maps for better heat exchanger designs in a wide range of thermal management applications. This paper presents a computational heat transfer study on different jet impingement scenarios to demonstrate the errors incurred in the determination of h when calculated under the assumption of one-dimensional (1-d) heat conduction into a solid. To this end, three different cases are studied: (a) single jet, (b) array jet (theoretical distribution), (c) array jet (experimental distribution), along with three different mainstream temperature evolution profiles representing step change, moderately fast transient and slow transient nature of flow driving the heat transfer in the solid. A known distribution of heat transfer coefficient (“true h”) for each of the three cases is considered, and three-dimensional transient heat diffusion equations were solved to populate temperatures of each node in the solid at every time step. It is found that stagnation zones’ h1d calculations were lower than the “true h” while the low heat transfer zones exhibited significantly higher h1d compared to the “true h”. For the array jet (experimental distribution) case, it was observed that errors can be as high as 10% in certain low heat transfer zones. Different data reduction procedures, configurations, and conditions explored in this study indicate that a suitable balance can be achieved if shorter time durations in transient experiments are used as a reference for tracking in h1d calculations to keep the deviations from the “true h” low. Full article
(This article belongs to the Special Issue New Insights of Gas Turbine Cooling Systems)
Show Figures

Figure 1

20 pages, 7849 KiB  
Article
Jet Impingement Heat Transfer Characteristics with Variable Extended Jet Holes under Strong Crossflow Conditions
by Xing Yang, Hang Wu and Zhenping Feng
Aerospace 2022, 9(1), 44; https://doi.org/10.3390/aerospace9010044 - 15 Jan 2022
Cited by 19 | Viewed by 5448
Abstract
In this paper, detailed flow patterns and heat transfer characteristics of a jet impingement system with extended jet holes are experimentally and numerically studied. The jet holes in the jet plate present an inline array of 16 × 5 rows in the streamwise [...] Read more.
In this paper, detailed flow patterns and heat transfer characteristics of a jet impingement system with extended jet holes are experimentally and numerically studied. The jet holes in the jet plate present an inline array of 16 × 5 rows in the streamwise (i.e., the crossflow direction) and spanwise directions, where the streamwise and spanwise distances between adjacent holes, which are normalized by the jet hole diameter (xn/d and yn/d), are 8 and 5, respectively. The jets impinge onto a smooth target plate with a normalized distance (zn/d) of 3.5 apart from the jet plate. The jet holes are extended by inserting stainless tubes throughout the jet holes and the extended lengths are varied in a range of 1.0d–2.5d, depending on the jet position in the streamwise direction. The experimental data is obtained by using the transient thermochromic liquid crystal (TLC) technique for wide operating jet Reynolds numbers of (1.0 × 104)–(3.0 × 104). The numerical simulations are well-validated using the experimental data and provide further insight into the flow physics within the jet impingement system. Comparisons with a traditional baseline jet impingement scheme show that the extended jet holes generate much higher local heat transfer levels and provide more uniform heat transfer distributions over the target plate, resulting in the highest improvement of approximately 36% in the Nusselt number. Although the extended jet hole configuration requires a higher pumping power to drive the flow through the impingement system, the gain of heat transfer prevails over the penalty of flow losses. At the same pumping power consumption, the extended jet hole design also has more than 10% higher heat transfer than the baseline scheme. Full article
(This article belongs to the Special Issue Cooling/Heat transfer (Volume II))
Show Figures

Figure 1

17 pages, 7470 KiB  
Article
Experimental and Numerical Modeling for Flattening and Rapid Solidification with Crystallization Behavior of Supersonic Ceramic Droplets
by Yu Wang, Nanjing Chong, Yu Bai, Kai Wu, Jun Zhou, Mingguang Shen, You Ming, Qi Liu, Yiwen Sun, Yongbao Hu, Xiaojuan Du and Zhaobin She
Coatings 2020, 10(11), 1047; https://doi.org/10.3390/coatings10111047 - 29 Oct 2020
Cited by 4 | Viewed by 2233
Abstract
Successive impingement of droplets after refining in supersonic plasma jet generally yields a submicron-sized lamellar coating with excellent comprehensive properties. Nevertheless, physical insight into the flattening and rapid solidification with crystallization behavior of supersonic impingement of refined droplets is difficult to understand. In [...] Read more.
Successive impingement of droplets after refining in supersonic plasma jet generally yields a submicron-sized lamellar coating with excellent comprehensive properties. Nevertheless, physical insight into the flattening and rapid solidification with crystallization behavior of supersonic impingement of refined droplets is difficult to understand. In this research, the content of refinement droplets reached 90% and displayed the multi-scale distribution of equiaxed grains. The boundary migration of equiaxed grains and anisotropic coalescence was found in the dynamic temperature gradient. Furthermore, an optimized model was established in order to accurately reproduce the multi-physical coupling process of supersonic impingement of single or two refined droplets, which was based on the numerical calculation of nonlinear equations (including the Mass and momentum, energy balance, Cahn–Hilliard, phase-field and orientational field equations). The size distribution and growth orientation of columnar grains within single or two flattened droplets were in good agreement with the experimental results. Epitaxial growth of columnar grains was found in the two-flattened droplet interface during the extremely rapid cooling stage. This optimized model could be an effective method in predicting the flattening and solidification with crystallization behavior of droplets during plasma spraying. Full article
Show Figures

Graphical abstract

15 pages, 4449 KiB  
Article
Comparative Study of Different Crystallization Methods in the Case of Cilostazol Crystal Habit Optimization
by Tímea Tari, Piroska Szabó-Révész and Zoltán Aigner
Crystals 2019, 9(6), 295; https://doi.org/10.3390/cryst9060295 - 5 Jun 2019
Cited by 17 | Viewed by 6860
Abstract
The therapeutic usage of cilostazol is limited owing to its poor aqueous solubility and oral bioavailability. Our aim was to produce cilostazol crystals with small average particle size; besides suitable roundness, narrow particle size distribution and stable polymorphic form to increase its dissolution [...] Read more.
The therapeutic usage of cilostazol is limited owing to its poor aqueous solubility and oral bioavailability. Our aim was to produce cilostazol crystals with small average particle size; besides suitable roundness, narrow particle size distribution and stable polymorphic form to increase its dissolution rate and improve processability. Different conventional crystallization methods with or without sonication were compared with impinging jet crystallization combined with cooling, and the optimization of the various parameters was also implemented. The effects of post-mixing time and temperature difference were studied by means of a full factorial design. The physical properties of powder particles were characterized by, i.a., XRPD, DSC and SEM. The dissolution rate and the contact angle of solid surfaces were also determined to elucidate the relationship between wettability and dissolution. It was observed that impinging jet crystallization combined with cooling is a very effective and reproducible method for reducing the particle size of cilostazol. This method resulted in significantly smaller particle size (d(0.5) = 3–5 μm) and more uniform crystals compared to the original ground material (d(0.5) = 24 μm) or the conventional methods (d(0.5) = 8–14 μm), and it also resulted in a stable polymorphic form and enhanced the dissolution rate. Full article
(This article belongs to the Special Issue Anti-Solvent Crystallization)
Show Figures

Graphical abstract

Back to TopTop