Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = impedance angle criterion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3228 KB  
Article
Fault Equivalence and Calculation Method for Distribution Networks Considering the Influence of Inverters on the Grid Side and the Distribution Network Side
by Jiangang Lu, Ruifeng Zhao, Yueming Fang, Yifan Gao, Kai Gan and Yizhe Chen
Energies 2025, 18(8), 2111; https://doi.org/10.3390/en18082111 - 19 Apr 2025
Cited by 1 | Viewed by 339
Abstract
Due to the increasing availability of new energy sources, the adaptability of traditional fault analysis and calculation methods has declined when applied to distribution networks. The reason is that the traditional ideal voltage source model cannot accurately reflect the impact of new energy [...] Read more.
Due to the increasing availability of new energy sources, the adaptability of traditional fault analysis and calculation methods has declined when applied to distribution networks. The reason is that the traditional ideal voltage source model cannot accurately reflect the impact of new energy from the main grid side on distribution networks. Moreover, the existing calculation methods fail to consider the influence of new energy on both the grid side and the distribution network side simultaneously, resulting in relatively large calculation errors and inaccurate fault characteristics. To address the above problems, this paper first studies the control strategy and current output characteristics of typical inverter-based resources (IBR) and establishes an integrated source model for the grid side with a high proportion of IBRs during faults. The model employs a parallel connection of an ideal voltage source with series impedance and a voltage-controlled current source. A model parameter identification method is proposed, leveraging a genetic algorithm and utilizing the normal operating electrical quantities at the port. Then, a fault-equivalent model and an iterative method for calculating electrical quantities in distribution networks are proposed, based on the integrated grid-side model. The method takes into account both distributed generators (DGs) and IBRs on the grid side, using the voltage error at the point of common coupling (PCC) as the convergence criterion for the iterative calculation. The simulation results of PSCAD/EMTDC show that the proposed model and calculation method have high accuracy. The model precisely reflects the characteristics of reduced port voltage and limited current during faults on the grid side. The amplitude errors of the electrical quantities are within 1%, and the phase angle errors are within 4°. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

28 pages, 14974 KB  
Article
Multidimensional Particle Separation by Tilted-Angle Standing Surface Acoustic Waves—Physics, Control, and Design
by Sebastian Sachs, Jörg König and Christian Cierpka
Powders 2025, 4(1), 2; https://doi.org/10.3390/powders4010002 - 8 Jan 2025
Cited by 1 | Viewed by 1233
Abstract
Lab-on-a-Chip devices based on tilted-angle standing surface acoustic waves (tasSAWs) emerged as a promising technology for multidimensional particle separation, highly selective in particle size and acoustic contrast factor. For this active separation method, a tailored acoustic field is used to focus and separate [...] Read more.
Lab-on-a-Chip devices based on tilted-angle standing surface acoustic waves (tasSAWs) emerged as a promising technology for multidimensional particle separation, highly selective in particle size and acoustic contrast factor. For this active separation method, a tailored acoustic field is used to focus and separate particles on stationary pressure nodes by means of the acoustic radiation force. However, additional non-linear acoustofluidic phenomena, such as the acoustically induced fluid flow or dielectrophoretic effects, are superimposed on the separation process. To obtain a particle separation of high quality, control parameters that can be adjusted during the separation process as well as design parameters are available. The latter are specified prior to the separation and span a high-dimensional parameter space, ranging from the acoustic wavelength to the dimensions and materials used for the microchannel. In this paper, the physical mechanisms to control and design tasSAW-based separation devices are reviewed. By combining experimental, semi-analytical, and numerical findings, a critical channel height and width are derived to suppress the influence of the acoustically induced fluid flow. Dealing with the three-dimensional nature of the separation process, particles are focused at different height levels of equal force balance by implementing a channel cover of high acoustic impedance while achieving an approx. three-times higher acoustic pressure. Using this improved channel design, the particle shape is identified as an additional separation criterion, rendering the continuous acoustofluidic particle separation as a multidimensional technology capable of selectively separating microparticles below 10 μm with regard to size, acoustic contrast, and shape. Full article
Show Figures

Figure 1

19 pages, 4820 KB  
Article
Fault Section Identification for Hybrid Transmission Lines Considering the Weak-Feed Characteristics of Floating Photovoltaic Power Plant Inverters
by Huiqiang Ye, Lifeng Zhu, Weifeng Xu, Fangzhou Liu, Xinbo Liu, Yi Xu and Qianggang Wang
Energies 2024, 17(22), 5640; https://doi.org/10.3390/en17225640 - 11 Nov 2024
Viewed by 955
Abstract
The overhead line (OHL)–cable hybrid transmission line, which connects floating photovoltaic (PV) power plants, needs to be considered regarding whether to block reclosing operations or not. However, due to the weak-feed characteristics of PV inverters, existing methods are difficult to apply in this [...] Read more.
The overhead line (OHL)–cable hybrid transmission line, which connects floating photovoltaic (PV) power plants, needs to be considered regarding whether to block reclosing operations or not. However, due to the weak-feed characteristics of PV inverters, existing methods are difficult to apply in this scenario. This paper proposes a criterion for fault section identification in the transmission lines of floating PV power plants based on traveling wave power and the zero-sequence impedance angle. Firstly, the fault current characteristics of photovoltaic inverters under dual-vector control are analyzed, and the applicability of the sequence component impedance directional criterion in this scenario is discussed. Then, the transmission, refraction, and reflection processes of traveling waves in OHL–cable hybrid lines are analyzed, and a traveling wave energy criterion is designed to determine the fault section. Finally, based on the scope of application of the zero-sequence impedance angle and traveling wave energy criterion, a fault section identification method for the hybrid lines of floating PV power plants is established. A deployment method for the proposed method, based on feeder terminal units (FTUs) at the connection points between the OHL and cable is proposed. This method identifies fault sections through traveling waves and zero-sequence impedance angles, which are unaffected by PV week feed characteristics, can be applied to all the AC fault types, and do not rely on multi-terminal synchronous sampling. The proposed method is verified on a 1MW PV system built in the PSCAD. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 10071 KB  
Article
Deformation Monitoring and Analysis of Baige Landslide (China) Based on the Fusion Monitoring of Multi-Orbit Time-Series InSAR Technology
by Kai Ye, Zhe Wang, Ting Wang, Ying Luo, Yiming Chen, Jiaqian Zhang and Jialun Cai
Sensors 2024, 24(20), 6760; https://doi.org/10.3390/s24206760 - 21 Oct 2024
Cited by 7 | Viewed by 2079
Abstract
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. [...] Read more.
Due to the limitations inherent in SAR satellite imaging modes, utilizing time-series InSAR technology to process single-orbit satellite image data typically only yields one-dimensional deformation information along the LOS direction. This constraint impedes a comprehensive representation of the true surface deformation of landslides. Consequently, in this paper, after the SBAS-InSAR and PS-InSAR processing of the 30-view ascending and 30-view descending orbit images of the Sentinel-1A satellite, based on the imaging geometric relationship of the SAR satellite, we propose a novel computational method of fusing ascending and descending orbital LOS-direction time-series deformation to extract the landslide’s downslope direction deformation of landslides. By applying this method to Baige landslide monitoring and integrating it with an improved tangential angle warning criterion, we classified the landslide’s trailing edge into a high-speed, a uniform-speed, and a low-speed deformation region, with deformation magnitudes of 7~8 cm, 5~7 cm, and 3~4 cm, respectively. A comparative analysis with measured data for landslide deformation monitoring revealed that the average root mean square error between the fused landslide’s downslope direction deformation and the measured data was a mere 3.62 mm. This represents a reduction of 56.9% and 57.5% in the average root mean square error compared to the single ascending and descending orbit LOS-direction time-series deformations, respectively, indicating higher monitoring accuracy. Finally, based on the analysis of landslide deformation and its inducing factors derived from the calculated time-series deformation results, it was determined that the precipitation, lithology of the strata, and ongoing geological activity are significant contributors to the sliding of the Baige land-slide. This method offers more comprehensive and accurate surface deformation information for dynamic landslide monitoring, aiding relevant departments in landslide surveillance and management, and providing technical recommendations for the fusion of multi-orbital satellite LOS-direction deformations to accurately reconstruct the true surface deformation of landslides. Full article
Show Figures

Figure 1

17 pages, 5887 KB  
Article
A Fault Direction Criterion Based on Post-Fault Positive-Sequence Information for Inverter Interfaced Distributed Generators Multi-Point Grid-Connected System
by Fan Yang, Hechong Chen, Gang Han, Huiran Xu, Yang Lei, Wei Hu and Shuxian Fan
Processes 2024, 12(7), 1522; https://doi.org/10.3390/pr12071522 - 19 Jul 2024
Viewed by 1305
Abstract
In response to the poor reliability in identifying fault direction in distribution networks with Inverter Interfaced Distributed Generators (IIDGs), considering the control strategy of low-voltage ride-through, a fault direction criterion based on post-fault positive-sequence steady-state components is proposed. Firstly, the output steady-state characteristics [...] Read more.
In response to the poor reliability in identifying fault direction in distribution networks with Inverter Interfaced Distributed Generators (IIDGs), considering the control strategy of low-voltage ride-through, a fault direction criterion based on post-fault positive-sequence steady-state components is proposed. Firstly, the output steady-state characteristics of IIDGs considering the low-voltage ride-through capability are analyzed during grid failure, and the applicability of existing directional elements in a distribution network with IIDGs connected dispersively is demonstrated. Subsequently, for the typical structure of an active distribution grid operating under flexible modes, the positive-sequence voltage and current are examined in various fault scenarios, and a reliable direction criterion is suggested based on the difference in post-fault positive-sequence impedance angles on different sides of the lines that are suitable whether on the grid side or the IIDG side. Lastly, the reliability of the proposed direction criterion is verified by simulation and the results indicate that the fault direction can be correctly determined, whereas phase-to-phase and three-phase short circuit faults occur in different scenarios, independent of the penetration and grid-connected positions of IIDGs, fault location, and transition resistance. It is suitable for fault direction discrimination of an IIDGs multi-point grid-connected system under a flexible operation mode. Full article
Show Figures

Figure 1

20 pages, 4931 KB  
Article
An Anti-Islanding Protection Method Based on Voltage-Synchronous Impedance Angle Measurements
by Fan Yang, Yang Lei, Hechong Chen, Zhichun Yang, Huabo Xu, Heng Chen and Yu Chen
Energies 2023, 16(20), 7139; https://doi.org/10.3390/en16207139 - 18 Oct 2023
Cited by 5 | Viewed by 1839
Abstract
Grid-tied distributed generators (DGs) need to be equipped with anti-islanding protection to avoid the impact of unplanned islanding, which would affect system stability, auto-reclosing, and personal safety. Among the active anti-islanding protections, impedance measurements based on signal injection have the advantages of a [...] Read more.
Grid-tied distributed generators (DGs) need to be equipped with anti-islanding protection to avoid the impact of unplanned islanding, which would affect system stability, auto-reclosing, and personal safety. Among the active anti-islanding protections, impedance measurements based on signal injection have the advantages of a low non-detection zone (NDZ) and are less prone to maloperation during grid disturbances; however, there are problems with signal interference in multi-DG systems. Hence, the impedance angle measurement method with signals injected synchronously is proposed. In this method, each DG injects phase-coherent signals to detect islanding using zero-cross points of the voltage (ZCPV) to avoid the protection failures caused by signal interference. An islanding identification criterion based on the measured impedance angle is proposed by analyzing the impedance characteristics of grid connection and islanding, which avoids the influence of variation of the DG operation state on islanding detection. Finally, we present a signal injection strategy and performance analysis in combination with an existing DG control platform, avoiding additional hardware investment. RTDS-based simulation verification shows that the proposed method can 100% avoid DG maloperation due to voltage and frequency disturbances during grid-connected operation and exit operation within 2 s when islanding occurs. Full article
Show Figures

Figure 1

22 pages, 30552 KB  
Article
Current Differential Protection for Active Distribution Networks Based on Adaptive Phase Angle Compensation Coefficient
by Chengao Yu, Zhanjun Gao, Zhao Liu and Zhengchen Tao
Appl. Sci. 2023, 13(8), 4723; https://doi.org/10.3390/app13084723 - 9 Apr 2023
Cited by 5 | Viewed by 2002
Abstract
The high penetration rate of distributed generations (DGs) makes the distribution network’s fault characteristics complex and variable, which limits the application of traditional current differential protection (CDP) in active distribution networks. According to the amplitude and phase characteristics analysis of positive-sequence current fault [...] Read more.
The high penetration rate of distributed generations (DGs) makes the distribution network’s fault characteristics complex and variable, which limits the application of traditional current differential protection (CDP) in active distribution networks. According to the amplitude and phase characteristics analysis of positive-sequence current fault components (PSCFCs) in the active distribution network, a novel CDP method based on the adaptive phase angle compensation coefficient is proposed. The method improves the traditional CDP by introducing an adaptive phase angle compensation coefficient, which adaptively compensates the phase of PSCFCs on the DG side according to the phase difference and amplitude ratio of PSCFCs on both sides of the protected feeder. To effectively cope with the negative impact of unmeasurable load branches on protection reliability, the polarity information of the action impedance is used to construct an auxiliary criterion. The effectiveness of the proposed protection scheme is verified in the PSCAD/EMTDC. Compared with the traditional CDP, this scheme can meet the protection needs of active distribution networks under various fault scenarios with high sensitivity and reliability. The proposed method can withstand high fault resistance and large time synchronization errors, and it can still trip correctly under 150 Ω fault resistance or 4.6 ms time synchronization errors. Full article
Show Figures

Figure 1

Back to TopTop