Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = immunophilins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 10362 KiB  
Article
Genome-Wide Analysis of Tea FK506-Binding Proteins (FKBPs) Reveals That CsFKBP53 Enhances Cold-Stress Tolerance in Transgenic Arabidopsis thaliana
by Ming-Hui Xu, Jie Tang, Cai-Ning Liu, Wan-Qiao Zhang, Qian Li, Fan Yang and Dan-Dan Liu
Int. J. Mol. Sci. 2025, 26(8), 3575; https://doi.org/10.3390/ijms26083575 - 10 Apr 2025
Cited by 1 | Viewed by 555
Abstract
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in [...] Read more.
FK506-binding proteins (FKBPs) belong to the peptidyl-prolyl cis/trans isomerase (PPIase) superfamily and are involved in a wide range of biological processes including protein folding, hormone signaling, plant growth, and stress responses. However, the FKBPs and their biological functions have not been identified in tea plants. In this study, 21 FKBP genes were identified using the conserved FK506-binding domain (PF00254) in the tea-plant genome. Their phylogeny, classification, structure, motifs, interactors, and expression patterns were analyzed. Comprehensive qRT-PCR analysis revealed distinct expression patterns of CsFKBPs in different tissues and in response to low temperature. Through a comprehensive genome-wide analysis, we characterized the low-temperature expression dynamics of the CsFKBP53 gene family and demonstrated that its overexpression significantly enhances cold tolerance in Arabidopsis. Notably, the transcript levels of CsFKBP53 exhibited pronounced variability across distinct tea (Camellia sinensis) cultivars under cold-stress conditions. These findings not only underscore the functional conservation of FKBP-type immunophilins across plant lineages but also highlight the biotechnological potential of CsFKBP53 as a genetic modulator of low-temperature resilience in crops. By integrating comparative genomics and functional validation, our study establishes a foundation for leveraging conserved stress-response mechanisms to engineer climate-resilient plants. Full article
(This article belongs to the Special Issue Plant Physiology and Molecular Nutrition)
Show Figures

Figure 1

13 pages, 2777 KiB  
Article
Bacterial Chaperone Domain Insertions Convert Human FKBP12 into an Excellent Protein-Folding Catalyst—A Structural and Functional Analysis
by Gabriel Žoldák, Thomas A. Knappe, Anne-Juliane Geitner, Christian Scholz, Holger Dobbek, Franz X. Schmid and Roman P. Jakob
Molecules 2024, 29(7), 1440; https://doi.org/10.3390/molecules29071440 - 23 Mar 2024
Viewed by 1671
Abstract
Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be [...] Read more.
Many folding enzymes use separate domains for the binding of substrate proteins and for the catalysis of slow folding reactions such as prolyl isomerization. FKBP12 is a small prolyl isomerase without a chaperone domain. Its folding activity is low, but it could be increased by inserting the chaperone domain from the homolog SlyD of E. coli near the prolyl isomerase active site. We inserted two other chaperone domains into human FKBP12: the chaperone domain of SlpA from E. coli, and the chaperone domain of SlyD from Thermococcus sp. Both stabilized FKBP12 and greatly increased its folding activity. The insertion of these chaperone domains had no influence on the FKBP12 and the chaperone domain structure, as revealed by two crystal structures of the chimeric proteins. The relative domain orientations differ in the two crystal structures, presumably representing snapshots of a more open and a more closed conformation. Together with crystal structures from SlyD-like proteins, they suggest a path for how substrate proteins might be transferred from the chaperone domain to the prolyl isomerase domain. Full article
(This article belongs to the Special Issue Drug Design and Activity Screening of Targeted Proteins)
Show Figures

Figure 1

13 pages, 2842 KiB  
Article
FKBP38 Regulates Self-Renewal and Survival of GBM Neurospheres
by Aimee L. Dowling, Stuart Walbridge, Celine Ertekin, Sriya Namagiri, Krystal Camacho, Ashis Chowdhury, Jean-Paul Bryant, Eric Kohut, John D. Heiss, Desmond A. Brown, Sangamesh G. Kumbar and Yeshavanth Kumar Banasavadi-Siddegowda
Cells 2023, 12(21), 2562; https://doi.org/10.3390/cells12212562 - 2 Nov 2023
Cited by 1 | Viewed by 1878
Abstract
Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the [...] Read more.
Glioblastoma is the most common malignant primary brain tumor. The outcome is dismal, despite the multimodal therapeutic approach that includes surgical resection, followed by radiation and chemotherapy. The quest for novel therapeutic targets to treat glioblastoma is underway. FKBP38, a member of the immunophilin family of proteins, is a multidomain protein that plays an important role in the regulation of cellular functions, including apoptosis and autophagy. In this study, we tested the role of FKBP38 in glioblastoma tumor biology. Expression of FKBP38 was upregulated in the patient-derived primary glioblastoma neurospheres (GBMNS), compared to normal human astrocytes. Attenuation of FKBP38 expression decreased the viability of GBMNSs and increased the caspase 3/7 activity, indicating that FKBP38 is required for the survival of GBMNSs. Further, the depletion of FKBP38 significantly reduced the number of neurospheres that were formed, implying that FKBP38 regulates the self-renewal of GBMNSs. Additionally, the transient knockdown of FKBP38 increased the LC3-II/I ratio, suggesting the induction of autophagy with the depletion of FKBP38. Further investigation showed that the negative regulation of autophagy by FKBP38 in GBMNSs is mediated through the JNK/C-Jun–PTEN–AKT pathway. In vivo, FKBP38 depletion significantly extended the survival of tumor-bearing mice. Overall, our results suggest that targeting FKBP38 imparts an anti-glioblastoma effect by inducing apoptosis and autophagy and thus can be a potential therapeutic target for glioblastoma therapy. Full article
Show Figures

Figure 1

17 pages, 3416 KiB  
Article
Dual Drug Delivery in Cochlear Implants: In Vivo Study of Dexamethasone Combined with Diclofenac or Immunophilin Inhibitor MM284 in Guinea Pigs
by Wiebke Behrends, Katharina Wulf, Stefan Raggl, Max Fröhlich, Thomas Eickner, Dana Dohr, Karl-Heinz Esser, Thomas Lenarz, Verena Scheper and Gerrit Paasche
Pharmaceutics 2023, 15(3), 726; https://doi.org/10.3390/pharmaceutics15030726 - 22 Feb 2023
Cited by 8 | Viewed by 2808
Abstract
Cochlear implants are well established to treat severe hearing impairments. Despite many different approaches to reduce the formation of connective tissue after electrode insertion and to keep electrical impedances low, results are not yet satisfying. Therefore, the aim of the current study was [...] Read more.
Cochlear implants are well established to treat severe hearing impairments. Despite many different approaches to reduce the formation of connective tissue after electrode insertion and to keep electrical impedances low, results are not yet satisfying. Therefore, the aim of the current study was to combine the incorporation of 5% dexamethasone in the silicone body of the electrode array with an additional polymeric coating releasing diclofenac or the immunophilin inhibitor MM284, some anti-inflammatory substances not yet tested in the inner ear. Guinea pigs were implanted for four weeks and hearing thresholds were determined before implantation and after the observation time. Impedances were monitored over time and, finally, connective tissue and the survival of spiral ganglion neurons (SGNs) were quantified. Impedances increased in all groups to a similar extent but this increase was delayed in the groups with an additional release of diclofenac or MM284. Using Poly-L-lactide (PLLA)-coated electrodes, the damage caused during insertion was much higher than without the coating. Only in these groups, connective tissue could extend to the apex of the cochlea. Despite this, numbers of SGNs were only reduced in PLLA and PLLA plus diclofenac groups. Even though the polymeric coating was not flexible enough, MM284 seems to especially have potential for further evaluation in connection with cochlear implantation. Full article
Show Figures

Figure 1

15 pages, 4499 KiB  
Article
Penetrating Exploration of Prognostic Correlations of the FKBP Gene Family with Lung Adenocarcinoma
by Chin-Chou Wang, Wan-Jou Shen, Gangga Anuraga, Yu-Hsiu Hsieh, Hoang Dang Khoa Ta, Do Thi Minh Xuan, Chiu-Fan Shen, Chih-Yang Wang and Wei-Jan Wang
J. Pers. Med. 2023, 13(1), 49; https://doi.org/10.3390/jpm13010049 - 26 Dec 2022
Cited by 9 | Viewed by 2883
Abstract
The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected [...] Read more.
The complexity of lung adenocarcinoma (LUAD), the development of which involves many interacting biological processes, makes it difficult to find therapeutic biomarkers for treatment. FK506-binding proteins (FKBPs) are composed of 12 members classified as conservative intracellular immunophilin family proteins, which are often connected to cyclophilin structures by tetratricopeptide repeat domains and have peptidyl prolyl isomerase activity that catalyzes proline from residues and turns the trans form into the cis form. Since FKBPs belong to chaperone molecules and promote protein folding, previous studies demonstrated that FKBP family members significantly contribute to the degradation of damaged, misfolded, abnormal, and foreign proteins. However, transcript expressions of this gene family in LUAD still need to be more fully investigated. In this research, we adopted high-throughput bioinformatics technology to analyze FKBP family genes in LUAD to provide credible information to clinicians and promote the development of novel cancer target drugs in the future. The current data revealed that the messenger (m)RNA levels of FKBP2, FKBP3, FKBP4, FKBP10, FKBP11, and FKBP14 were overexpressed in LUAD, and FKBP10 had connections to poor prognoses among LUAD patients in an overall survival (OS) analysis. Based on the above results, we selected FKBP10 to further conduct a comprehensive analysis of the downstream pathway and network. Through a DAVID analysis, we found that FKBP10 was involved in mitochondrial electron transport, NADH to ubiquinone transport, mitochondrial respiratory chain complex I assembly, etc. The MetaCore pathway analysis also indicated that FKBP10 was involved in "Ubiquinone metabolism", "Translation_(L)-selenoaminoacid incorporation in proteins during translation", and "Transcription_Negative regulation of HIF1A function". Collectively, this study revealed that FKBP family members are both significant prognostic biomarkers for lung cancer progression and promising clinical therapeutic targets, thus providing new targets for treating LUAD patients. Full article
Show Figures

Figure 1

13 pages, 3069 KiB  
Article
Calcineurin Inhibitor CN585 Exhibits Off-Target Effects in the Human Fungal Pathogen Aspergillus fumigatus
by Praveen R. Juvvadi, Benjamin G. Bobay, D. Christopher Cole, Monaf Awwa and William J. Steinbach
J. Fungi 2022, 8(12), 1281; https://doi.org/10.3390/jof8121281 - 7 Dec 2022
Cited by 1 | Viewed by 1921
Abstract
Calcineurin (CN) is an attractive antifungal target as it is critical for growth, stress response, drug resistance, and virulence in fungal pathogens. The immunosuppressive drugs, tacrolimus (FK506) and cyclosporin A (CsA), are fungistatic and specifically inhibit CN through binding to their respective immunophilins, [...] Read more.
Calcineurin (CN) is an attractive antifungal target as it is critical for growth, stress response, drug resistance, and virulence in fungal pathogens. The immunosuppressive drugs, tacrolimus (FK506) and cyclosporin A (CsA), are fungistatic and specifically inhibit CN through binding to their respective immunophilins, FK506-binding protein (FKBP12), and cyclophilin (CypA). We are focused on CN structure-based approaches for the development of non-immunosuppressive FK506 analogs as antifungal therapeutics. Here, we examined the effect of the novel CN inhibitor, CN585, on the growth of the human pathogen Aspergillus fumigatus, the most common cause of invasive aspergillosis. Unexpectedly, in contrast to FK506, CN585 exhibited off-target effect on A. fumigatus wild-type and the azole- and echinocandin-resistant strains. Unlike with FK506 and CsA, the A. fumigatus CN, FKBP12, CypA mutants (ΔcnaA, Δfkbp12, ΔcypA) and various FK506-resistant mutants were all sensitive to CN585. Furthermore, in contrast to FK506 the cytosolic to nuclear translocation of the CN-dependent transcription factor (CrzA-GFP) was not inhibited by CN585. Molecular docking of CN585 onto human and A. fumigatus CN complexes revealed differential potential binding sites between human CN versus A. fumigatus CN. Our results indicate CN585 may be a non-specific inhibitor of CN with a yet undefined antifungal mechanism of activity. Full article
(This article belongs to the Section Fungal Pathogenesis and Disease Control)
Show Figures

Figure 1

13 pages, 2606 KiB  
Article
The Scaffold Immunophilin FKBP51 Is a Phosphoprotein That Undergoes Dynamic Mitochondrial-Nuclear Shuttling
by Nadia R. Zgajnar, Cristina Daneri-Becerra, Ana Cauerhff and Mario D. Galigniana
Cells 2022, 11(23), 3771; https://doi.org/10.3390/cells11233771 - 25 Nov 2022
Cited by 4 | Viewed by 2147
Abstract
The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric [...] Read more.
The immunophilin FKBP51 forms heterocomplexes with molecular chaperones, protein-kinases, protein-phosphatases, autophagy-related factors, and transcription factors. Like most scaffold proteins, FKBP51 can use a simple tethering mechanism to favor the efficiency of interactions with partner molecules, but it can also exert more complex allosteric controls over client factors, the immunophilin itself being a putative regulation target. One of the simplest strategies for regulating pathways and subcellular localization of proteins is phosphorylation. In this study, it is shown that scaffold immunophilin FKBP51 is resolved by resolutive electrophoresis in various phosphorylated isoforms. This was evidenced by their reactivity with specific anti-phosphoamino acid antibodies and their fade-out by treatment with alkaline phosphatase. Interestingly, stress situations such as exposure to oxidants or in vivo fasting favors FKBP51 translocation from mitochondria to the nucleus. While fasting involves phosphothreonine residues, oxidative stress involves tyrosine residues. Molecular modeling predicts the existence of potential targets located at the FK1 domain of the immunophilin. Thus, oxidative stress favors FKBP51 dephosphorylation and protein degradation by the proteasome, whereas FK506 binding protects the persistence of the post-translational modification in tyrosine, leading to FKBP51 stability under oxidative conditions. Therefore, FKBP51 is revealed as a phosphoprotein that undergoes differential phosphorylations according to the stimulus. Full article
(This article belongs to the Special Issue Scaffold Proteins in Health, Disease, and Therapy)
Show Figures

Figure 1

26 pages, 3026 KiB  
Review
Light-Activating PROTACs in Cancer: Chemical Design, Challenges, and Applications
by Arvind Negi, Kavindra Kumar Kesari and Anne Sophie Voisin-Chiret
Appl. Sci. 2022, 12(19), 9674; https://doi.org/10.3390/app12199674 - 26 Sep 2022
Cited by 13 | Viewed by 3635
Abstract
Nonselective cell damage remains a significant limitation of radiation therapies in cancer. Decades of successful integration of radiation therapies with other medicinal chemistry strategies significantly improved therapeutic benefits in cancer. Advancing in such technologies also led to the development of specific photopharmcology-based approaches [...] Read more.
Nonselective cell damage remains a significant limitation of radiation therapies in cancer. Decades of successful integration of radiation therapies with other medicinal chemistry strategies significantly improved therapeutic benefits in cancer. Advancing in such technologies also led to the development of specific photopharmcology-based approaches that improved the cancer cell selectivity and provided researchers with spatiotemporal control over the degradation of highly expressed proteins in cancer (proteolysis targeting chimeras, PROTACs) using a monochrome wavelength light source. Two specific strategies that have achieved notable successes are photocage and photoswitchable PROTACs. Photocaged PROTACs require a photolabile protecting group (PPG) that, when radiated with a specific wavelength of light, irreversibly release PPG and induce protein degradation. Thus far, diethylamino coumarin for estrogen-related receptor α (ERRα), nitropiperonyloxymethyl (BRD4 bromodomain protein), and 4,5-dimethoxy-2-nitrobenzyl for (BRD4 bromodomain protein, as well as BTK kinase protein) were successfully incorporated in photocaged PROTACs. On the other hand, photoswitches of photoswitchable PROTACs act as an actual ON/OFF switch to target specific protein degradation in cancer. The ON/OFF function of photoswitches in PROTACs (as photoswitchable PROTACs) provide spatiotemporal control over protein degradation, and to an extent are correlated with their photoisomeric state (cis/trans-configuration), showcasing an application of the photochemistry concept in precision medicine. This study compiles the photoswitchable PROTACs targeted to bromodomain proteins: BRD 2, 3, and 4; kinases (BCR-ABL fusion protein, ABL); and the immunophilin FKBP12. Photocaging of PROTACs found successes in selective light-controlled degradation of kinase proteins, bromodomain-containing proteins, and estrogen receptors in cancer cells. Full article
(This article belongs to the Special Issue Synchrotron Radiation for Medical Applications)
Show Figures

Figure 1

11 pages, 6869 KiB  
Article
Loss of Expression of Antiangiogenic Protein FKBPL in Endometrioid Endometrial Carcinoma: Implications for Clinical Practice
by Danilo D. Obradović, Nataša M. Milić, Nenad Miladinović, Lana McClements and Dejan M. Oprić
Medicina 2022, 58(10), 1330; https://doi.org/10.3390/medicina58101330 - 22 Sep 2022
Cited by 4 | Viewed by 2579
Abstract
Background and Objectives: FK506 binding protein like (FKBPL) is a member of the immunophilin family, with anti-angiogenic effects capable of inhibiting the migration of endothelial cells and blood vessel formation. Its role as an inhibitor of tumor growth and angiogenesis has previously [...] Read more.
Background and Objectives: FK506 binding protein like (FKBPL) is a member of the immunophilin family, with anti-angiogenic effects capable of inhibiting the migration of endothelial cells and blood vessel formation. Its role as an inhibitor of tumor growth and angiogenesis has previously been shown in studies with breast and ovarian cancer. The role of FKBPL in angiogenesis, growth, and carcinogenesis of endometrioid endometrial carcinoma (EEC) is still largely unknown. The aim of this study was to examine the expression of FKBPL in EEC and benign endometrial hyperplasia (BEH) and its correlation with the expression of vascular endothelial factor-A (VEGF-A) and estrogen receptor alpha (ERα). Materials and Methods: Specimens from 89 patients with EEC and 40 patients with BEH, as well as histological, clinical, and demographic data, were obtained from the Clinical Hospital Centre Zemun, Belgrade, Serbia over a 10-year period (2010–2020). Immunohistochemical staining of the tissue was performed for FKBPL, VEGF-A, and ERα. Slides were analyzed blind by two pathologists, who measured the intensity of FKBPL and VEGF-A expression and used the Allred score to determine the level of ERα expression. Results: Immunohistochemical analysis showed moderate to high intensity of FKBPL expression in 97.5% (n = 39) of samples of BEH, and low or no expression in 93.3% (n = 83) of cases of EEC. FKBPL staining showed a high positive predictive value (98.8%) and a high negative predictive value for malignant diagnosis (86.7%). The difference in FKBPL expression between EEC and BEH was statistically significant (p < 0.001), showing a decrease in intensity and loss of expression in malignant tissues of the endometrium. FKBPL expression was positively correlated with ERα expression (intensity, percentage and high Allred score values) and negatively correlated with the expression of VEGF-A (p < 0.05 for all). Conclusions: FKBPL protein expression demonstrated a significant decrease in FKBPL in EEC in comparison to BEH tissue, with a high predictive value for malignancy. FKBPL might be emerging as a significant protein with antiangiogenic and antineoplastic effects, showing great promise for the diagnostic and therapeutic applications of its therapeutic derivatives in gynecological oncology. Full article
Show Figures

Figure 1

23 pages, 886 KiB  
Review
Progesterone as an Anti-Inflammatory Drug and Immunomodulator: New Aspects in Hormonal Regulation of the Inflammation
by Tatiana A. Fedotcheva, Nadezhda I. Fedotcheva and Nikolai L. Shimanovsky
Biomolecules 2022, 12(9), 1299; https://doi.org/10.3390/biom12091299 - 14 Sep 2022
Cited by 62 | Viewed by 9009
Abstract
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P [...] Read more.
The specific regulation of inflammatory processes by steroid hormones has been actively studied in recent years, especially by progesterone (P4) and progestins. The mechanisms of the anti-inflammatory and immunomodulatory P4 action are not fully clear. The anti-inflammatory effects of P4 can be defined as nonspecific, associated with the inhibition of NF-κB and COX, as well as the inhibition of prostaglandin synthesis, or as specific, associated with the regulation of T-cell activation, the regulation of the production of pro- and anti-inflammatory cytokines, and the phenomenon of immune tolerance. The specific anti-inflammatory effects of P4 and its derivatives (progestins) can also include the inhibition of proliferative signaling pathways and the antagonistic action against estrogen receptor beta-mediated signaling as a proinflammatory and mitogenic factor. The anti-inflammatory action of P4 is accomplished through the participation of progesterone receptor (PR) chaperones HSP90, as well as immunophilins FKBP51 and FKBP52, which are the validated targets of clinically approved immunosuppressive drugs. The immunomodulatory and anti-inflammatory effects of HSP90 inhibitors, tacrolimus and cyclosporine, are manifested, among other factors, due to their participation in the formation of an active ligand–receptor complex of P4 and their interaction with its constituent immunophilins. Pharmacological agents such as HSP90 inhibitors can restore the lost anti-inflammatory effect of glucocorticoids and P4 in chronic inflammatory and autoimmune diseases. By regulating the activity of FKBP51 and FKBP52, it is possible to increase or decrease hormonal signaling, as well as restore it during the development of hormone resistance. The combined action of immunophilin suppressors with steroid hormones may be a promising strategy in the treatment of chronic inflammatory and autoimmune diseases, including endometriosis, stress-related disorders, rheumatoid arthritis, and miscarriages. Presumably, the hormone receptor- and immunophilin-targeted drugs may act synergistically, allowing for a lower dose of each. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

18 pages, 8330 KiB  
Article
FKBP51, AmotL2 and IQGAP1 Involvement in Cilastatin Prevention of Cisplatin-Induced Tubular Nephrotoxicity in Rats
by Rebeca González-Fernández, María Ángeles González-Nicolás, Manuel Morales, Julio Ávila, Alberto Lázaro and Pablo Martín-Vasallo
Cells 2022, 11(9), 1585; https://doi.org/10.3390/cells11091585 - 9 May 2022
Cited by 7 | Viewed by 3448
Abstract
The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal [...] Read more.
The immunophilin FKBP51, the angiomotin AmotL2, and the scaffoldin IQGAP1 are overexpressed in many types of cancer, with the highest increase in leucocytes from patients undergoing oxaliplatin chemotherapy. Inflammation is involved in the pathogenesis of nephrotoxicity induced by platinum analogs. Cilastatin prevents renal damage caused by cisplatin. This functional and confocal microscopy study shows the renal focal-segmental expression of TNFα after cisplatin administration in rats, predominantly of tubular localization and mostly prevented by co-administration of cilastatin. FKBP51, AmotL2 and IQGAP1 protein expression increases slightly with cilastatin administration and to a much higher extent with cisplatin, in a cellular- and subcellular-specific manner. Kidney tubule cells expressing FKBP51 show either very low or no expression of TNFα, while cells expressing TNFα have low levels of FKBP51. AmotL2 and TNFα seem to colocalize and their expression is increased in tubular cells. IQGAP1 fluorescence increases with cilastatin, cisplatin and joint cilastatin-cisplatin treatment, and does not correlate with TNFα expression or localization. These data suggest a role for FKBP51, AmotL2 and IQGAP1 in cisplatin toxicity in kidney tubules and in the protective effect of cilastatin through inhibition of dehydropeptidase-I. Full article
(This article belongs to the Special Issue Scaffold Proteins in Health, Disease, and Therapy)
Show Figures

Figure 1

23 pages, 5768 KiB  
Review
Advances towards Understanding the Mechanism of Action of the Hsp90 Complex
by Chrisostomos Prodromou and Dennis M. Bjorklund
Biomolecules 2022, 12(5), 600; https://doi.org/10.3390/biom12050600 - 19 Apr 2022
Cited by 36 | Viewed by 5974
Abstract
Hsp90 (Heat Shock Protein 90) is an ATP (Adenosine triphosphate) molecular chaperone responsible for the activation and maturation of client proteins. The mechanism by which Hsp90 achieves such activation, involving structurally diverse client proteins, has remained enigmatic. However, recent advances using structural techniques, [...] Read more.
Hsp90 (Heat Shock Protein 90) is an ATP (Adenosine triphosphate) molecular chaperone responsible for the activation and maturation of client proteins. The mechanism by which Hsp90 achieves such activation, involving structurally diverse client proteins, has remained enigmatic. However, recent advances using structural techniques, together with advances in biochemical studies, have not only defined the chaperone cycle but have shed light on its mechanism of action. Hsp90 hydrolysis of ATP by each protomer may not be simultaneous and may be dependent on the specific client protein and co-chaperone complex involved. Surprisingly, Hsp90 appears to remodel client proteins, acting as a means by which the structure of the client protein is modified to allow its subsequent refolding to an active state, in the case of kinases, or by making the client protein competent for hormone binding, as in the case of the GR (glucocorticoid receptor). This review looks at selected examples of client proteins, such as CDK4 (cyclin-dependent kinase 4) and GR, which are activated according to the so-called ‘remodelling hypothesis’ for their activation. A detailed description of these activation mechanisms is paramount to understanding how Hsp90-associated diseases develop. Full article
(This article belongs to the Special Issue Hsp90 Structure, Mechanism and Disease)
Show Figures

Figure 1

21 pages, 2862 KiB  
Article
FK506-Binding Protein 11 Is a Novel Plasma Cell-Specific Antibody Folding Catalyst with Increased Expression in Idiopathic Pulmonary Fibrosis
by Stefan Preisendörfer, Yoshihiro Ishikawa, Elisabeth Hennen, Stephan Winklmeier, Jonas C. Schupp, Larissa Knüppel, Isis E. Fernandez, Leonhard Binzenhöfer, Andrew Flatley, Brenda M. Juan-Guardela, Clemens Ruppert, Andreas Guenther, Marion Frankenberger, Rudolf A. Hatz, Nikolaus Kneidinger, Jürgen Behr, Regina Feederle, Aloys Schepers, Anne Hilgendorff, Naftali Kaminski, Edgar Meinl, Hans Peter Bächinger, Oliver Eickelberg and Claudia A. Staab-Weijnitzadd Show full author list remove Hide full author list
Cells 2022, 11(8), 1341; https://doi.org/10.3390/cells11081341 - 14 Apr 2022
Cited by 15 | Viewed by 4962
Abstract
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We [...] Read more.
Antibodies are central effectors of the adaptive immune response, widespread used therapeutics, but also potentially disease-causing biomolecules. Antibody folding catalysts in the plasma cell are incompletely defined. Idiopathic pulmonary fibrosis (IPF) is a fatal chronic lung disease with increasingly recognized autoimmune features. We found elevated expression of FK506-binding protein 11 (FKBP11) in IPF lungs where FKBP11 specifically localized to antibody-producing plasma cells. Suggesting a general role in plasma cells, plasma cell-specific FKBP11 expression was equally observed in lymphatic tissues, and in vitro B cell to plasma cell differentiation was accompanied by induction of FKBP11 expression. Recombinant human FKBP11 was able to refold IgG antibody in vitro and inhibited by FK506, strongly supporting a function as antibody peptidyl-prolyl cis-trans isomerase. Induction of ER stress in cell lines demonstrated induction of FKBP11 in the context of the unfolded protein response in an X-box-binding protein 1 (XBP1)-dependent manner. While deficiency of FKBP11 increased susceptibility to ER stress-mediated cell death in an alveolar epithelial cell line, FKBP11 knockdown in an antibody-producing hybridoma cell line neither induced cell death nor decreased expression or secretion of IgG antibody. Similarly, antibody secretion by the same hybridoma cell line was not affected by knockdown of the established antibody peptidyl-prolyl isomerase cyclophilin B. The results are consistent with FKBP11 as a novel XBP1-regulated antibody peptidyl-prolyl cis-trans isomerase and indicate significant redundancy in the ER-resident folding machinery of antibody-producing hybridoma cells. Full article
(This article belongs to the Special Issue State of the Art in Idiopathic Pulmonary Fibrosis)
Show Figures

Figure 1

13 pages, 1341 KiB  
Review
Hypothalamic Regulation of Corticotropin-Releasing Factor under Stress and Stress Resilience
by Kazunori Kageyama, Yasumasa Iwasaki and Makoto Daimon
Int. J. Mol. Sci. 2021, 22(22), 12242; https://doi.org/10.3390/ijms222212242 - 12 Nov 2021
Cited by 49 | Viewed by 10984
Abstract
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH [...] Read more.
This review addresses the molecular mechanisms of corticotropin-releasing factor (CRF) regulation in the hypothalamus under stress and stress resilience. CRF in the hypothalamus plays a central role in regulating the stress response. CRF stimulates adrenocorticotropic hormone (ACTH) release from the anterior pituitary. ACTH stimulates glucocorticoid secretion from the adrenal glands. Glucocorticoids are essential for stress coping, stress resilience, and homeostasis. The activated hypothalamic-pituitary-adrenal axis is suppressed by the negative feedback from glucocorticoids. Glucocorticoid-dependent repression of cAMP-stimulated Crf promoter activity is mediated by both the negative glucocorticoid response element and the serum response element. Conversely, the inducible cAMP-early repressor can suppress the stress response via inhibition of the cAMP-dependent Crf gene, as can the suppressor of cytokine signaling-3 in the hypothalamus. CRF receptor type 1 is mainly involved in a stress response, depression, anorexia, and seizure, while CRF receptor type 2 mediates “stress coping” mechanisms such as anxiolysis in the brain. Differential effects of FK506-binding immunophilins, FKBP4 and FKBP5, contribute to the efficiency of glucocorticoids under stress resilience. Together, a variety of factors contribute to stress resilience. All these factors would have the differential roles under stress resilience. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Stress Response and Resilience)
Show Figures

Figure 1

10 pages, 2223 KiB  
Article
Differential Effects of Fkbp4 and Fkbp5 on Regulation of the Proopiomelanocortin Gene in Murine AtT-20 Corticotroph Cells
by Kazunori Kageyama, Yasumasa Iwasaki, Yutaka Watanuki, Kanako Niioka and Makoto Daimon
Int. J. Mol. Sci. 2021, 22(11), 5724; https://doi.org/10.3390/ijms22115724 - 27 May 2021
Cited by 11 | Viewed by 4071
Abstract
The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When activated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is mediated via glucocorticoid receptors, 11β-hydroxysteroid dehydrogenases, and [...] Read more.
The hypothalamic-pituitary-adrenal axis is stimulated in response to stress. When activated, it is suppressed by the negative feedback effect of glucocorticoids. Glucocorticoids directly inhibit proopiomelanocortin (Pomc) gene expression in the pituitary. Glucocorticoid signaling is mediated via glucocorticoid receptors, 11β-hydroxysteroid dehydrogenases, and the FK506-binding immunophilins, Fkbp4 and Fkbp5. Fkbp4 and Fkbp5 differentially regulate dynein interaction and nuclear translocation of the glucocorticoid receptor, resulting in modulation of the glucocorticoid action. Here, we explored the regulation of Fkbp4 and Fkbp5 genes and their proteins with dexamethasone, a major synthetic glucocorticoid drug, in murine AtT-20 corticotroph cells. To elucidate further roles of Fkbp4 and Fkbp5, we examined their effects on Pomc mRNA levels in corticotroph cells. Dexamethasone decreased Pomc mRNA levels as well as Fkpb4 mRNA levels in mouse corticotroph cells. Dexamethasone tended to decrease Fkbp4 protein levels, while it increased Fkpb5 mRNA and its protein levels. The dexamethasone-induced decreases in Pomc mRNA levels were partially canceled by Fkbp4 knockdown. Alternatively, Pomc mRNA levels were further decreased by Fkbp5 knockdown. Thus, Fkbp4 contributes to the negative feedback of glucocorticoids, and Fkbp5 reduces the efficiency of the glucocorticoid effect on Pomc gene expression in pituitary corticotroph cells. Full article
(This article belongs to the Special Issue Molecular Mechanisms Underlying Stress Response and Resilience)
Show Figures

Figure 1

Back to TopTop