Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ice shelf retreat and advance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10116 KiB  
Article
Environmental and Oceanographic Conditions at the Continental Margin of the Central Basin, Northwestern Ross Sea (Antarctica) Since the Last Glacial Maximum
by Fiorenza Torricella, Romana Melis, Elisa Malinverno, Giorgio Fontolan, Mauro Bussi, Lucilla Capotondi, Paola Del Carlo, Alessio Di Roberto, Andrea Geniram, Gerhard Kuhn, Boo-Keun Khim, Caterina Morigi, Bianca Scateni and Ester Colizza
Geosciences 2021, 11(4), 155; https://doi.org/10.3390/geosciences11040155 - 31 Mar 2021
Cited by 10 | Viewed by 4181
Abstract
The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last [...] Read more.
The continental margin is a key area for studying the sedimentary processes related to the advance and retreat of the Ross Ice Shelf (Antarctica); nevertheless, much remains to be investigated. The aim of this study is to increase the knowledge of the last glacial/deglacial dynamics in the Central Basin slope–basin system using a multidisciplinary approach, including integrated sedimentological, micropaleontological and tephrochronological information. The analyses carried out on three box cores highlighted sedimentary sequences characterised by tree stratigraphic units. Collected sediments represent a time interval from 24 ka Before Present (BP) to the present time. Grain size clustering and data on the sortable silt component, together with diatom, silicoflagellate and foraminifera assemblages indicate the influence of the ice shelf calving zone (Unit 1, 24–17 ka BP), progressive receding due to Circumpolar Deep Water inflow (Unit 2, 17–10.2 ka BP) and (Unit 3, 10.2 ka BP–present) the establishment of seasonal sea ice with a strengthening of bottom currents. The dominant and persistent process is a sedimentation controlled by contour currents, which tend to modulate intensity in time and space. A primary volcanic ash layer dated back at around 22 ka BP is correlated with the explosive activity of Mount Rittmann. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

12 pages, 2110 KiB  
Article
Clay Mineralogical Characteristics of Sediments Deposited during the Late Quaternary in the Larsen Ice Shelf B Embayment, Antarctica
by Jaewoo Jung, Kyu-Cheul Yoo, Kee-Hwan Lee, Young Kyu Park, Jae Il Lee and Jinwook Kim
Minerals 2019, 9(3), 153; https://doi.org/10.3390/min9030153 - 3 Mar 2019
Cited by 13 | Viewed by 4980
Abstract
Variations in grain size, clay mineral composition, and stable isotopes (δ13C and δ15N) are closely linked to the sedimentary facies that reflect mineralogical and geochemical modification during the retreat and advance of the Larsen ice shelf. A whole round [...] Read more.
Variations in grain size, clay mineral composition, and stable isotopes (δ13C and δ15N) are closely linked to the sedimentary facies that reflect mineralogical and geochemical modification during the retreat and advance of the Larsen ice shelf. A whole round core of marine sediment (EAP13-GC17, 236 cm below the sea floor) was collected on the northwestern Larsen B embayment of the Antarctic Peninsula during a marine geological expedition (the ARA13 Cruise Expedition by the Korea Polar Research Institute, 2013). Four sedimentary facies (U1–U4) were clearly distinguishable: bioturbated sandy mud (open marine, U1), laminated sandy mud (sub–floating ice shelf, U2), sandy clay aggregates (deglacial, U3), and muddy diamictons (sub-glacial, U4), as well as interbedded silty. Clay minerals, including smectite, chlorite, illite, and kaolinite, were detected throughout the core. An increase in the clay mineral ratio of smectite/(illite + chlorite) was clearly observed in the open marine condition, which was strongly indicated by both a heavier isotopic composition of δ13C and δ15N (−24.4‰ and 4.3‰, respectively), and an abrupt increase in 10Be concentration (~30 times). An increase in the average values of the crystal packet thickness of illite (~1.5 times) in U1 also indicated sediments transported in open marine conditions. Based on the clay mineral composition in U1, the sediments are likely to have been transported from the Weddell Sea. The clay mineralogical assessments conducted in this region have significant implications for our understanding of paleodepositional environments. Full article
(This article belongs to the Special Issue Clays and Micro-Organisms: From Nature to Industry)
Show Figures

Figure 1

28 pages, 4648 KiB  
Review
Remote Sensing of Antarctic Glacier and Ice-Shelf Front Dynamics—A Review
by Celia A. Baumhoer, Andreas J. Dietz, Stefan Dech and Claudia Kuenzer
Remote Sens. 2018, 10(9), 1445; https://doi.org/10.3390/rs10091445 - 10 Sep 2018
Cited by 57 | Viewed by 14671
Abstract
The contribution of Antarctica’s ice sheet to global sea-level rise depends on the very dynamic behavior of glaciers and ice shelves. One important parameter of ice-sheet dynamics is the location of glacier and ice-shelf fronts. Numerous remote sensing studies on Antarctic glacier and [...] Read more.
The contribution of Antarctica’s ice sheet to global sea-level rise depends on the very dynamic behavior of glaciers and ice shelves. One important parameter of ice-sheet dynamics is the location of glacier and ice-shelf fronts. Numerous remote sensing studies on Antarctic glacier and ice-shelf front positions exist, but no long-term record on circum-Antarctic front dynamics has been established so far. The article outlines the potential of remote sensing to map, extract, and measure calving front dynamics. Furthermore, this review provides an overview of the spatial and temporal availability of Antarctic calving front observations for the first time. Single measurements are compiled to a circum-Antarctic record of glacier and ice shelf retreat/advance. We find sufficient frontal records for the Antarctic Peninsula and Victoria Land, whereas on the West Antarctic Ice Sheet (WAIS), measurements only concentrate on specific glaciers and ice sheets. Frontal records for the East Antarctic Ice Sheet exist since the 1970s. Studies agree on the general retreat of calving fronts along the Antarctic Peninsula. East Antarctic calving fronts also showed retreating tendencies between 1970s until the early 1990s, but have advanced since the 2000s. Exceptions of this general trend are Victoria Land, Wilkes Land, and the northernmost Dronning Maud Land. For the WAIS, no clear trend in long-term front fluctuations could be identified, as observations of different studies vary in space and time, and fronts highly fluctuate. For further calving front analysis, regular mapping intervals as well as glacier morphology should be included. We propose to exploit current and future developments in Earth observations to create frequent standardized measurements for circum-Antarctic assessments of glacier and ice-shelf front dynamics in regard to ice-sheet mass balance and climate forcing. Full article
Show Figures

Graphical abstract

Back to TopTop