Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = iNKT cell-enhanced vaccine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1496 KiB  
Review
Lipid Antigens: Revealing the Hidden Players in Adaptive Immune Responses
by Tamana Eskandari, Yasamin Eivazzadeh, Fatemeh Khaleghinia, Fatemeh Kashi, Valentyn Oksenych and Dariush Haghmorad
Biomolecules 2025, 15(1), 84; https://doi.org/10.3390/biom15010084 - 8 Jan 2025
Viewed by 1774
Abstract
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group [...] Read more.
Traditionally, research on the adaptive immune system has focused on protein antigens, but emerging evidence has underscored the essential role of lipid antigens in immune modulation. Lipid antigens are presented by CD1 molecules and activate invariant natural killer T (iNKT) cells and group 1 CD1-restricted T cells, whereby they impact immune responses to pathogens and tumors. Recent advances in mass spectrometry, imaging techniques, and lipidomics have revolutionized the identification and characterization of lipid antigens and enhanced our understanding of their structural diversity and functional significance. These advancements have paved the way for lipid-based vaccines and immunotherapies through the application of nanoparticles and synthetic lipid antigens designed to boost immune responses against cancers and infectious diseases. Lipid trafficking, CD1 molecule interactions, and the immune system’s response to lipid antigens are yet to be completely understood, particularly in the context of autoimmunity and microbial infections. In the years to come, continued research efforts are needed to uncover its underlying biological mechanisms and to exploit the full potential of therapies directed against lipid antigens. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 6419 KiB  
Article
Adjuvant Use of the Invariant-Natural-Killer-T-Cell Agonist α-Galactosylceramide Leads to Vaccine-Associated Enhanced Respiratory Disease in Influenza-Vaccinated Pigs
by Bianca L. Artiaga, Daniel Madden, Taeyong Kwon, Chester McDowell, Cassidy Keating, Velmurugan Balaraman, Darling Melany de Carvahlo Madrid, Laurie Touchard, Jamie Henningson, Philip Meade, Florian Krammer, Igor Morozov, Juergen A. Richt and John P. Driver
Vaccines 2024, 12(9), 1068; https://doi.org/10.3390/vaccines12091068 - 18 Sep 2024
Viewed by 1835
Abstract
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This [...] Read more.
Invariant natural killer T (iNKT) cells are glycolipid-reactive T cells with potent immunoregulatory properties. iNKT cells activated with the marine-sponge-derived glycolipid, α-galactosylceramide (αGC), provide a universal source of T-cell help that has shown considerable promise for a wide array of therapeutic applications. This includes harnessing iNKT-cell-mediated immune responses to adjuvant whole inactivated influenza virus (WIV) vaccines. An important concern with WIV vaccines is that under certain circumstances, they are capable of triggering vaccine-associated enhanced respiratory disease (VAERD). This immunopathological phenomenon can arise after immunization with an oil-in-water (OIW) adjuvanted WIV vaccine, followed by infection with a hemagglutinin and neuraminidase mismatched challenge virus. This elicits antibodies (Abs) that bind immunodominant epitopes in the HA2 region of the heterologous virus, which purportedly causes enhanced virus fusion activity to the host cell and increased infection. Here, we show that αGC can induce severe VAERD in pigs. However, instead of stimulating high concentrations of HA2 Abs, αGC elicits high concentrations of interferon (IFN)-γ-secreting cells both in the lungs and systemically. Additionally, we found that VAERD mediated by iNKT cells results in distinct cytokine profiles and altered adaptation of the challenge virus following infection compared to an OIW adjuvant. Overall, these results provide a cautionary note about considering the formulation of WIV vaccines with iNKT-cell agonists as a potential strategy to modulate antigen-specific immunity. Full article
(This article belongs to the Special Issue Immunity to Influenza Viruses and Vaccines)
Show Figures

Figure 1

16 pages, 1330 KiB  
Article
Co-Delivery of the Human NY-ESO-1 Tumor-Associated Antigen and Alpha-GalactosylCeramide by Filamentous Bacteriophages Strongly Enhances the Expansion of Tumor-Specific CD8+ T Cells
by Roberta Manco, Luciana D’Apice, Maria Trovato, Lucia Lione, Erika Salvatori, Eleonora Pinto, Mirco Compagnone, Luigi Aurisicchio, Piergiuseppe De Berardinis and Rossella Sartorius
Viruses 2023, 15(3), 672; https://doi.org/10.3390/v15030672 - 2 Mar 2023
Cited by 1 | Viewed by 2773
Abstract
Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in [...] Read more.
Tumor-associated antigens (TAAs) represent attractive targets in the development of anti-cancer vaccines. The filamentous bacteriophage is a safe and versatile delivery nanosystem, and recombinant bacteriophages expressing TAA-derived peptides at a high density on the viral coat proteins improve TAA immunogenicity, triggering effective in vivo anti-tumor responses. To enhance the efficacy of the bacteriophage as an anti-tumor vaccine, we designed and generated phage particles expressing a CD8+ peptide derived from the human cancer germline antigen NY-ESO-1 decorated with the immunologically active lipid alpha-GalactosylCeramide (α-GalCer), a potent activator of invariant natural killer T (iNKT) cells. The immune response to phage expressing the human TAA NY-ESO-1 and delivering α-GalCer, namely fdNY-ESO-1/α-GalCer, was analyzed either in vitro or in vivo, using an HLA-A2 transgenic mouse model (HHK). By using NY-ESO-1-specific TCR-engineered T cells and iNKT hybridoma cells, we observed the efficacy of the fdNY-ESO-1/α-GalCer co-delivery strategy at inducing activation of both the cell subsets. Moreover, in vivo administration of fdNY-ESO-1 decorated with α-GalCer lipid in the absence of adjuvants strongly enhances the expansion of NY-ESO-1-specific CD8+ T cells in HHK mice. In conclusion, the filamentous bacteriophage delivering TAA-derived peptides and the α-GalCer lipid may represent a novel and promising anti-tumor vaccination strategy. Full article
Show Figures

Figure 1

18 pages, 4312 KiB  
Article
Vaccine Based on Dendritic Cells Electroporated with an Exogenous Ovalbumin Protein and Pulsed with Invariant Natural Killer T Cell Ligands Effectively Induces Antigen-Specific Antitumor Immunity
by Akihiro Watanabe, Kimihiro Yamashita, Mitsugu Fujita, Akira Arimoto, Masayasu Nishi, Shiki Takamura, Masafumi Saito, Kota Yamada, Kyosuke Agawa, Tomosuke Mukoyama, Masayuki Ando, Shingo Kanaji, Takeru Matsuda, Taro Oshikiri and Yoshihiro Kakeji
Cancers 2022, 14(1), 171; https://doi.org/10.3390/cancers14010171 - 30 Dec 2021
Cited by 5 | Viewed by 3598
Abstract
(1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in [...] Read more.
(1) Background: Cancer vaccines are administered to induce cytotoxic CD8+ T cells (CTLs) specific for tumor antigens. Invariant natural killer T (iNKT) cells, the specific T cells activated by α-galactosylceramide (α-GalCer), play important roles in this process as they are involved in both innate and adaptive immunity. We developed a new cancer vaccine strategy in which dendritic cells (DCs) were loaded with an exogenous ovalbumin (OVA) protein by electroporation (EP) and pulsed with α-GalCer. (2) Methods: We generated bone marrow-derived DCs from C57BL/6 mice, loaded full-length ovalbumin proteins to the DCs by EP, and pulsed them with α-GalCer (OVA-EP-galDCs). The OVA-EP-galDCs were intravenously administered to C57BL/6 mice as a vaccine. We then investigated subsequent immune responses, such as the induction of iNKT cells, NK cells, intrinsic DCs, and OVA-specific CD8+ T cells, including tissue-resident memory T (TRM) cells. (3) Results: The OVA-EP-galDC vaccine efficiently rejected subcutaneous tumors in a manner primarily dependent on CD8+ T cells. In addition to the OVA-specific CD8+ T cells both in early and late phases, we observed the induction of antigen-specific TRM cells in the skin. (4) Conclusions: The OVA-EP-galDC vaccine efficiently induced antigen-specific antitumor immunity, which was sustained over time, as shown by the TRM cells. Full article
(This article belongs to the Topic Animal Model in Biomedical Research)
Show Figures

Figure 1

18 pages, 355 KiB  
Review
Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective
by Guan Yang, Jürgen A. Richt and John P. Driver
Int. J. Mol. Sci. 2018, 19(1), 68; https://doi.org/10.3390/ijms19010068 - 27 Dec 2017
Cited by 12 | Viewed by 8873
Abstract
Invariant natural killer T (iNKT) cells are an “innate-like” T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these [...] Read more.
Invariant natural killer T (iNKT) cells are an “innate-like” T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these cells to enhance human vaccines against a wide range of microbial pathogens. However, long overlooked is the potential to harness iNKT cell antigens as vaccine adjuvants for domestic animal species that express the iNKT cell–CD1d system. In this review, we discuss the prospect of targeting porcine iNKT cells as a strategy to enhance the efficiency of swine influenza vaccines. In addition, we compare the phenotype and tissue distribution of porcine iNKT cells. Finally, we discuss the challenges that must be overcome before iNKT cell agonists can be contemplated for veterinary use in livestock. Full article
Show Figures

Figure 1

Back to TopTop