Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = i-ZnO

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3891 KiB  
Article
Effect of the ZnSnO/AZO Interface on the Charge Extraction in Cd-Free Kesterite Solar Cells
by Carla Gobbo, Valerio Di Palma, Vanira Trifiletti, Claudia Malerba, Matteo Valentini, Ilaria Matacena, Santolo Daliento, Simona Binetti, Maurizio Acciarri and Giorgio Tseberlidis
Energies 2023, 16(10), 4137; https://doi.org/10.3390/en16104137 - 17 May 2023
Cited by 14 | Viewed by 2756
Abstract
Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for CZTS solar cells but, beyond its toxicity, [...] Read more.
Cu2ZnSnS4 (CZTS) is a promising absorber material to produce thin film solar cells thanks to its high absorption coefficient, low cost and low toxicity. CdS is commonly used as a buffer layer for CZTS solar cells but, beyond its toxicity, it has a nonoptimal band alignment with CZTS. ZnxSn1−xO (ZTO), based on earth-abundant and nontoxic elements and with a large and tunable band gap, is a suitable alternative buffer layer. In this paper, the atomic layer deposition (ALD) of ZTO was employed by testing different compositions and thicknesses. ALD not only leads to very compact and homogenous ZTO layers (enabling tuning the stoichiometry of the ZTO so prepared) but also makes the i-ZnO layer (usually sandwiched between the buffer layer and the transparent contact) redundant and detrimental. Through SCAPS simulation and impedance measurements, the ZnSnO/AZO interface impact on the Cd-free kesterite solar cells’ performances has been investigated, highlighting its leading role in achieving an effective charge extraction and the detrimental effect of the i-ZnO layer. With this approach, a solar cell based on an architecture simpler and more eco-friendly than the conventional one has been produced with comparable efficiencies. Full article
(This article belongs to the Collection Feature Papers in Advanced Energy Materials)
Show Figures

Figure 1

10 pages, 23023 KiB  
Article
Atomic Layer Deposition of Ultrathin ZnO Films for Hybrid Window Layers for Cu(Inx,Ga1−x)Se2 Solar Cells
by Jaebaek Lee, Dong-Hwan Jeon, Dae-Kue Hwang, Kee-Jeong Yang, Jin-Kyu Kang, Shi-Joon Sung, Hyunwoong Park and Dae-Hwan Kim
Nanomaterials 2021, 11(11), 2779; https://doi.org/10.3390/nano11112779 - 20 Oct 2021
Cited by 12 | Viewed by 2890
Abstract
The efficiency of thin-film chalcogenide solar cells is dependent on their window layer thickness. However, the application of an ultrathin window layer is difficult because of the limited capability of the deposition process. This paper reports the use of atomic layer deposition (ALD) [...] Read more.
The efficiency of thin-film chalcogenide solar cells is dependent on their window layer thickness. However, the application of an ultrathin window layer is difficult because of the limited capability of the deposition process. This paper reports the use of atomic layer deposition (ALD) processes for fabrication of thin window layers for Cu(Inx,Ga1−x)Se2 (CIGS) thin-film solar cells, replacing conventional sputtering techniques. We fabricated a viable ultrathin 12 nm window layer on a CdS buffer layer from the uniform conformal coating provided by ALD. CIGS solar cells with an ALD ZnO window layer exhibited superior photovoltaic performances to those of cells with a sputtered intrinsic ZnO (i-ZnO) window layer. The short-circuit current of the former solar cells improved with the reduction in light loss caused by using a thinner ZnO window layer with a wider band gap. Ultrathin uniform A-ZnO window layers also proved more effective than sputtered i-ZnO layers at improving the open-circuit voltage of the CIGS solar cells, because of the additional buffering effect caused by their semiconducting nature. In addition, because of the precise control of the material structure provided by ALD, CIGS solar cells with A-ZnO window layers exhibited a narrow deviation of photovoltaic properties, advantageous for large-scale mass production purposes. Full article
(This article belongs to the Special Issue Advances in Nanomaterials for Photovoltaic Applications)
Show Figures

Graphical abstract

12 pages, 5700 KiB  
Article
Degradation Mechanism Due to Water Ingress Effect on the Top Contact of Cu(In,Ga)Se2 Solar Cells
by Deewakar Poudel, Shankar Karki, Benjamin Belfore, Grace Rajan, Sushma Swaraj Atluri, Sina Soltanmohammad, Angus Rockett and Sylvain Marsillac
Energies 2020, 13(17), 4545; https://doi.org/10.3390/en13174545 - 2 Sep 2020
Cited by 18 | Viewed by 2544
Abstract
The impact of moisture ingress on the surface of copper indium gallium diselenide (CIGS) solar cells was studied. While industry-scale modules are encapsulated in specialized polymers and glass, over time, the glass can break and the encapsulant can degrade. During such conditions, water [...] Read more.
The impact of moisture ingress on the surface of copper indium gallium diselenide (CIGS) solar cells was studied. While industry-scale modules are encapsulated in specialized polymers and glass, over time, the glass can break and the encapsulant can degrade. During such conditions, water can potentially degrade the interior layers and decrease performance. The first layer the water will come in contact with is the transparent conductive oxide (TCO) layer. To simulate the impact of this moisture ingress, complete devices were immersed in deionized water. To identify the potential sources of degradation, a common window layer for CIGS devices—a bilayer of intrinsic zinc oxide (i-ZnO) and conductive indium tin oxide (ITO)—was deposited. The thin films were then analyzed both pre and post water soaking. To determine the extent of ingress, dynamic secondary ion mass spectroscopy (SIMS) was performed on completed devices to analyze impurity diffusion (predominantly sodium and potassium) in the devices. The results were compared to device measurements, and indicated a degradation of device efficiency (mostly fill factor, contrary to previous studies), potentially due to a modification of the alkali profile. Full article
Show Figures

Graphical abstract

14 pages, 3196 KiB  
Article
RF/DC Magnetron Sputtering Deposition of Thin Layers for Solar Cell Fabrication
by Slawomir Gulkowski and Ewelina Krawczak
Coatings 2020, 10(8), 791; https://doi.org/10.3390/coatings10080791 - 14 Aug 2020
Cited by 15 | Viewed by 6434
Abstract
Thin film Cu(In,Ga)Se2 (CIGS)-based solar cells with relatively high efficiency and low material usage might become a promising alternative for crystalline silicon technology. The most challenging task nowadays is to decrease the PV module fabrication costs by application of easily scalable industrial [...] Read more.
Thin film Cu(In,Ga)Se2 (CIGS)-based solar cells with relatively high efficiency and low material usage might become a promising alternative for crystalline silicon technology. The most challenging task nowadays is to decrease the PV module fabrication costs by application of easily scalable industrial process. One of the possible solutions is the usage of magnetron sputtering system for deposition of all structures applied in CIGS-based photovoltaic device. The main object of these studies was fabrication and characterization of thin films deposited by sputtering technique. Structural and electrical properties of the sputtered films were analyzed using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray Powder Diffraction (XRD), and four-point probe resistivity measurements. The presented findings revealed technological parameters for which sheet resistance of molybdenum (Mo) back contact decreased up to 0.3 Ω/□ and to even 0.08 Ω/□ in case of aluminum layer. EDS analysis provided evidence for the appropriate stoichiometry of CIGS absorber (with CGI and GGI equal to 0.96 and 0.2, respectively). XRD characterization confirmed high-quality chalcopyrite polycrystalline structure of Cu(In,Ga)Se2 film fabricated at relatively low substrate temperature of 400 °C. Characteristic XRD peaks of hexagonal-oriented structures of sputtered CdS and i-ZnO layers were noticed. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

15 pages, 6823 KiB  
Article
Characterization of Impact Ionization Coefficient of ZnO Based on a p-Si/i-ZnO/n-AZO Avalanche Photodiode
by Gaoming Li, Xiaolong Zhao, Xiangwei Jia, Shuangqing Li and Yongning He
Micromachines 2020, 11(8), 740; https://doi.org/10.3390/mi11080740 - 30 Jul 2020
Cited by 2 | Viewed by 3349
Abstract
The avalanche photodiode is a highly sensitive photon detector with wide applications in optical communication and single photon detection. ZnO is a promising wide band gap material to realize a UV avalanche photodiode (APD). However, the lack of p-type doping, the strong self-compensation [...] Read more.
The avalanche photodiode is a highly sensitive photon detector with wide applications in optical communication and single photon detection. ZnO is a promising wide band gap material to realize a UV avalanche photodiode (APD). However, the lack of p-type doping, the strong self-compensation effect, and the scarcity of data on the ionization coefficients restrain the development and application of ZnO APD. Furthermore, ZnO APD has been seldom reported before. In this work, we employed a p-Si/i-ZnO/n-AZO structure to successfully realize electron avalanche multiplication. Based on this structure, we investigated the band structure, field profile, Current–Voltage (I-V) characteristics, and avalanche gain. To examine the influence of the width of the i-ZnO layer on the performance, we changed the i-ZnO layer thickness to 250, 500, and 750 nm. The measured breakdown voltages agree well with the corresponding threshold electric field strengths that we calculated. The agreement between the experimental data and calculated results supports our analysis. Finally, we provide data on the impact ionization coefficients of electrons for ZnO along the (001) direction, which is of great significance in designing high-performance low excess noise ZnO APD. Our work lays a foundation to realize a high-performance ZnO-based avalanche device. Full article
Show Figures

Figure 1

16 pages, 4108 KiB  
Article
Optimization of Intrinsic ZnO Thickness in Cu(In,Ga)Se2-Based Thin Film Solar Cells
by Salh Alhammadi, Hyeonwook Park and Woo Kyoung Kim
Materials 2019, 12(9), 1365; https://doi.org/10.3390/ma12091365 - 26 Apr 2019
Cited by 39 | Viewed by 6125
Abstract
The typical structure of high efficiency Cu(InGa)Se2 (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by [...] Read more.
The typical structure of high efficiency Cu(InGa)Se2 (CIGS)-based thin film solar cells is substrate/Mo/CIGS/CdS/i-ZnO/ZnO:Al(AZO) where the sun light comes through the transparent conducting oxide (i.e., i-ZnO/AZO) side. In this study, the thickness of an intrinsic zinc oxide (i-ZnO) layer was optimized by considering the surface roughness of CIGS light absorbers. The i-ZnO layers with different thicknesses from 30 to 170 nm were deposited via sputtering. The optical properties, microstructures, and morphologies of the i-ZnO thin films with different thicknesses were characterized, and their effects on the CIGS solar cell device properties were explored. Two types of CIGS absorbers prepared by three-stage co-evaporation and two-step sulfurization after the selenization (SAS) processes showed a difference in the preferred crystal orientation, morphology, and surface roughness. During the subsequent post-processing for the fabrication of the glass/Mo/CIGS/CdS/i-ZnO/AZO device, the change in the i-ZnO thickness influenced the performance of the CIGS devices. For the three-stage co-evaporated CIGS cell, the increase in the thickness of the i-ZnO layer from 30 to 90 nm improved the shunt resistance (RSH), open circuit voltage, and fill factor (FF), as well as the conversion efficiency (10.1% to 11.8%). A further increas of the i-ZnO thickness to 170 nm, deteriorated the device performance parameters, which suggests that 90 nm is close to the optimum thickness of i-ZnO. Conversely, the device with a two-step SAS processed CIGS absorber showed smaller values of the overall RSH (130–371 Ω cm2) than that of the device with a three-stage co-evaporated CIGS absorber (530–1127 Ω cm2) ranging from 30 nm to 170 nm of i-ZnO thickness. Therefore, the value of the shunt resistance was monotonically increased with the i-ZnO thickness ranging from 30 to 170 nm, which improved the FF and conversion efficiency (6.96% to 8.87%). Full article
(This article belongs to the Special Issue ZnO-Based Nanomaterials and Devices: Fundamentals and Applications)
Show Figures

Figure 1

Back to TopTop