Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hypobetalipoproteinemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 687 KiB  
Brief Report
Exploring Plasma Coenzyme Q10 Status in Paediatric Dyslipidaemia
by Beatriz Minguez, Mariela de Los Santos, Camila Garcia-Volpe, Cristina Molera, Abraham J. Paredes-Fuentes, Clara Oliva, Angela Arias, Helena Rodriguez-Gonzalez, Delia Yubero, Mireia Tondo, Carlos Santos-Ocaña, Silvia Meavilla and Rafael Artuch
Antioxidants 2024, 13(8), 966; https://doi.org/10.3390/antiox13080966 - 9 Aug 2024
Cited by 1 | Viewed by 1546
Abstract
Coenzyme Q10 (CoQ) is a ubiquitous lipid with different biological functions. In blood, there is a close relationship between CoQ status and cholesterol, which strongly supports the study of both molecules simultaneously. The objective of this study was to evaluate plasma CoQ, lipoprotein [...] Read more.
Coenzyme Q10 (CoQ) is a ubiquitous lipid with different biological functions. In blood, there is a close relationship between CoQ status and cholesterol, which strongly supports the study of both molecules simultaneously. The objective of this study was to evaluate plasma CoQ, lipoprotein concentrations and CoQ/Chol ratio in a cohort of paediatric patients with different types of dyslipidaemias. A total of 60 paediatric patients were recruited (age range: 7 months–18 years), including 52 with different types of hypercholesterolemia, 2 with isolated hypertriglyceridemia and 6 with hypobetalipoproteinemia. Plasma CoQ was analysed by HPLC with electrochemical detection, and lipoprotein and cholesterol concentrations by standard automated methods. The lowest CoQ values were detected in patients with hypobetalipoproteinemia and in two cases of liver cirrhosis. Mean CoQ values were significantly higher in hypercholesterolemic patients compared to controls (average values 1.07 µmol/L and 0.63 µmol/L) while the CoQ/cholesterol ratio did not show differences (170 vs. 163, respectively). Mean CoQ values were significantly lower in the group of patients with hypobetalipoproteinemia compared to controls (mean CoQ values of 0.22 µmol/L vs. 0.63 µmol/L, respectively), while those of CoQ/cholesterol did not show differences. Pearson’s correlation test showed a positive correlation between the CoQ and cholesterol values (r = 0.565, p < 0.001) and between the CoQ and the LDL cholesterol values (r = 0.610, p < 0.001). Our results suggest that it is advisable to analyse plasma CoQ and cholesterol concentrations in patients with hypobetalipoproteinemia and hypercholesterolemia associated with liver damage. Full article
(This article belongs to the Special Issue CoQ10 and Aging and Age-Related Diseases—2nd Edition)
Show Figures

Figure 1

22 pages, 3934 KiB  
Article
Validation of Knock-Out Caco-2 TC7 Cells as Models of Enterocytes of Patients with Familial Genetic Hypobetalipoproteinemias
by Claire Bordat, Donato Vairo, Charlotte Cuerq, Charlotte Halimi, Franck Peiretti, Armelle Penhoat, Aurélie Vieille-Marchiset, Teresa Gonzalez, Marie-Caroline Michalski, Marion Nowicki, Noël Peretti and Emmanuelle Reboul
Nutrients 2023, 15(3), 505; https://doi.org/10.3390/nu15030505 - 18 Jan 2023
Cited by 4 | Viewed by 3366
Abstract
Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic [...] Read more.
Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (−57.0 ± 2.6% to −83.9 ± 1.6%) and cholesterol (−35.3 ± 4.4% to −60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (−41.5 ± 3.7% to −97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

13 pages, 1613 KiB  
Article
APOB CRISPR-Cas9 Engineering in Hypobetalipoproteinemia: A Promising Tool for Functional Studies of Novel Variants
by Xavier Vanhoye, Alexandre Janin, Amandine Caillaud, Antoine Rimbert, Fabienne Venet, Morgane Gossez, Wieneke Dijk, Oriane Marmontel, Séverine Nony, Charlotte Chatelain, Christine Durand, Pierre Lindenbaum, Jennifer Rieusset, Bertrand Cariou, Philippe Moulin and Mathilde Di Filippo
Int. J. Mol. Sci. 2022, 23(8), 4281; https://doi.org/10.3390/ijms23084281 - 13 Apr 2022
Cited by 8 | Viewed by 2930
Abstract
Hypobetalipoproteinemia is characterized by LDL-cholesterol and apolipoprotein B (apoB) plasma levels below the fifth percentile for age and sex. Familial hypobetalipoproteinemia (FHBL) is mostly caused by premature termination codons in the APOB gene, a condition associated with fatty liver and steatohepatitis. Nevertheless, many [...] Read more.
Hypobetalipoproteinemia is characterized by LDL-cholesterol and apolipoprotein B (apoB) plasma levels below the fifth percentile for age and sex. Familial hypobetalipoproteinemia (FHBL) is mostly caused by premature termination codons in the APOB gene, a condition associated with fatty liver and steatohepatitis. Nevertheless, many families with a FHBL phenotype carry APOB missense variants of uncertain significance (VUS). We here aimed to develop a proof-of-principle experiment to assess the pathogenicity of VUS using the genome editing of human liver cells. We identified a novel heterozygous APOB-VUS (p.Leu351Arg), in a FHBL family. We generated APOB knock-out (KO) and APOB-p.Leu351Arg knock-in Huh7 cells using CRISPR-Cas9 technology and studied the APOB expression, synthesis and secretion by digital droplet PCR and ELISA quantification. The APOB expression was decreased by 70% in the heterozygous APOB-KO cells and almost abolished in the homozygous-KO cells, with a consistent decrease in apoB production and secretion. The APOB-p.Leu351Arg homozygous cells presented with a 40% decreased APOB expression and undetectable apoB levels in cellular extracts and supernatant. Thus, the p.Leu351Arg affected the apoB secretion, which led us to classify this new variant as likely pathogenic and to set up a hepatic follow-up in this family. Therefore, the functional assessment of APOB-missense variants, using gene-editing technologies, will lead to improvements in the molecular diagnosis of FHBL and the personalized follow-up of these patients. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

13 pages, 696 KiB  
Article
Identification of a Variant in APOB Gene as a Major Cause of Hypobetalipoproteinemia in Lebanese Families
by Carine Ayoub, Yara Azar, Yara Abou-Khalil, Youmna Ghaleb, Sandy Elbitar, Georges Halaby, Selim Jambart, Marie-Hélène Gannagé-Yared, Cesar Yaghi, Carole Saade Riachy, Ralph El Khoury, Jean-Pierre Rabès, Mathilde Varret, Catherine Boileau, Petra El Khoury and Marianne Abifadel
Metabolites 2021, 11(9), 564; https://doi.org/10.3390/metabo11090564 - 24 Aug 2021
Cited by 6 | Viewed by 3336
Abstract
Familial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowledge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in [...] Read more.
Familial hypobetalipoproteinemia (FHBL) is a codominant genetic disorder characterized by reduced plasma levels of low-density lipoprotein cholesterol and apolipoprotein B. To our knowledge, no study on FHBL in Lebanon and the Middle East region has been reported. Therefore, we conducted genetic studies in unrelated families and probands of Lebanese origin presenting with FHBL, in order to identify the causes of this disease. We found that 71% of the recruited probands and their affected relatives were heterozygous for the p.(Arg490Trp) variant in the APOB gene. Haplotype analysis showed that these patients presented the same mutant haplotype. Moreover, there was a decrease in plasma levels of PCSK9 in affected individuals compared to the non-affected and a significant positive correlation between circulating PCSK9 and ApoB levels in all studied probands and their family members. Some of the p.(Arg490Trp) carriers suffered from diabetes, hepatic steatosis or neurological problems. In conclusion, the p.(Arg490Trp) pathogenic variant seems a cause of FHBL in patients from Lebanese origin, accounting for approximately 70% of the probands with FHBL presumably as a result of a founder mutation in Lebanon. This study is crucial to guide the early diagnosis, management and prevention of the associated complications of this disease. Full article
Show Figures

Figure 1

13 pages, 3385 KiB  
Article
A Rare Mutation in The APOB Gene Associated with Neurological Manifestations in Familial Hypobetalipoproteinemia
by Joanna Musialik, Anna Boguszewska-Chachulska, Dorota Pojda-Wilczek, Agnieszka Gorzkowska, Robert Szymańczak, Magdalena Kania, Agata Kujawa-Szewieczek, Małgorzata Wojcieszyn, Marek Hartleb and Andrzej Więcek
Int. J. Mol. Sci. 2020, 21(4), 1439; https://doi.org/10.3390/ijms21041439 - 20 Feb 2020
Cited by 9 | Viewed by 4614
Abstract
Clinical phenotypes of familial hypobetalipoproteinemia (FHBL) are related to a number of defective apolipoprotein B (APOB) alleles. Fatty liver disease is a typical manifestation, but serious neurological symptoms can appear. In this study, genetic analysis of the APOB gene and ophthalmological [...] Read more.
Clinical phenotypes of familial hypobetalipoproteinemia (FHBL) are related to a number of defective apolipoprotein B (APOB) alleles. Fatty liver disease is a typical manifestation, but serious neurological symptoms can appear. In this study, genetic analysis of the APOB gene and ophthalmological diagnostics were performed for family members with FHBL. Five relatives with FHBL, including a proband who developed neurological disorders, were examined. A sequencing analysis of the whole coding region of the APOB gene, including flanking intronic regions, was performed using the next-generation sequencing (NGS) method. Electrophysiological ophthalmological examinations were also done. In the proband and his affected relatives, NGS identified the presence of the pathogenic, rare heterozygous splicing variant c.3696+1G>T. Two known heterozygous missense variants—c.2188G>A, p.(Val730Ile) and c.8353A>C, p.(Asn2785His)—in the APOB gene were also detected. In all patients, many ophthalmologic abnormalities in electrophysiological tests were also found. The identified splicing variant c.3696+1G>T can be associated with observed autosomal, dominant FHBL with coexisting neurological symptoms, and both identified missense variants could be excluded as the main cause of observed clinical signs, according to mutation databases and the literature. Electroretinography examination is a sensitive method for the detection of early neuropathy and should therefore be recommended for the care of patients with FHBL. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Human Liver Diseases)
Show Figures

Figure 1

33 pages, 1013 KiB  
Review
Hepatitis C Virus, Cholesterol and Lipoproteins — Impact for the Viral Life Cycle and Pathogenesis of Liver Disease
by Daniel J. Felmlee, Mohamed Lamine Hafirassou, Mathieu Lefevre, Thomas F. Baumert and Catherine Schuster
Viruses 2013, 5(5), 1292-1324; https://doi.org/10.3390/v5051292 - 23 May 2013
Cited by 120 | Viewed by 18590
Abstract
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on [...] Read more.
Hepatitis C virus (HCV) is a leading cause of chronic liver disease, including chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Hepatitis C infection associates with lipid and lipoprotein metabolism disorders such as hepatic steatosis, hypobetalipoproteinemia, and hypocholesterolemia. Furthermore, virus production is dependent on hepatic very-low-density lipoprotein (VLDL) assembly, and circulating virions are physically associated with lipoproteins in complexes termed lipoviral particles. Evidence has indicated several functional roles for the formation of these complexes, including co-opting of lipoprotein receptors for attachment and entry, concealing epitopes to facilitate immune escape, and hijacking host factors for HCV maturation and secretion. Here, we review the evidence surrounding pathogenesis of the hepatitis C infection regarding lipoprotein engagement, cholesterol and triglyceride regulation, and the molecular mechanisms underlying these effects. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

Back to TopTop