Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = hyperaminoacidemia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3407 KiB  
Article
Neither Incretin or Amino Acid Responses, nor Casein Content, Account for the Equal Insulin Response Following Iso-Lactose Loads of Natural Human and Cow Milk in Healthy Young Adults
by Paolo Tessari, Alessandro Toffolon, Monica Vettore, Elisabetta Iori, Anna Lante, Emiliano Feller, Elisabetta Alma Rocco, Monica Vedovato, Giovanna Verlato and Massimo Bellettato
Nutrients 2022, 14(8), 1624; https://doi.org/10.3390/nu14081624 - 13 Apr 2022
Cited by 1 | Viewed by 2712
Abstract
Human milk contains <50% less protein (casein) than cow milk, but is equally effective in insulin secretion despite lower postingestion hyperaminoacidemia. Such potency of human milk might be modulated either by incretins (glucagon-like polypeptide-1,GLP-1); glucose-inhibitory-polypeptide, GIP), and/or by milk casein content. Healthy volunteers [...] Read more.
Human milk contains <50% less protein (casein) than cow milk, but is equally effective in insulin secretion despite lower postingestion hyperaminoacidemia. Such potency of human milk might be modulated either by incretins (glucagon-like polypeptide-1,GLP-1); glucose-inhibitory-polypeptide, GIP), and/or by milk casein content. Healthy volunteers of both sexes were fed iso-lactose loads of two low-protein milks, i.e., human [Hum] (n = 8) and casein-deprived cow milk (Cow [↓Cas]) (n = 10), as well as loads of two high-protein milks, i.e., cow (n = 7), and casein-added human-milk (Hum [↑Cas]) (n = 7). Plasma glucose, insulin, C-peptide, incretins and amino acid concentrations were measured for 240′. All milks induced the same transient hyperglycemia. The early [20′–30′] insulin and C-peptide responses were comparable among all milk types apart from the low-protein (Cow [↓Cas]) milk, where they were reduced by <50% (p < 0.05 vs. others). When comparing the two high-protein milks, GLP-1 and GIP [5’–20’] responses with the (Hum [↑Cas]) milk were lower (by ≈2–3 fold, p < 0.007 and p < 0.03 respectively) than those with cow milk, whereas incretin secretion was substantially similar. Plasma amino acid increments largely reflected the milk protein content. Thus, neither casein milk content, nor incretin or amino acid concentrations, can account for the specific potency of human milk on insulin secretion, which remains as yet unresolved. Full article
Show Figures

Figure 1

16 pages, 18303 KiB  
Article
High Protein Diet Feeding Aggravates Hyperaminoacidemia in Mice Deficient in Proglucagon-Derived Peptides
by Shinji Ueno, Yusuke Seino, Shihomi Hidaka, Ryuya Maekawa, Yuko Takano, Michiyo Yamamoto, Mika Hori, Kana Yokota, Atsushi Masuda, Tatsuhito Himeno, Shin Tsunekawa, Hideki Kamiya, Jiro Nakamura, Hitoshi Kuwata, Haruki Fujisawa, Megumi Shibata, Takeshi Takayanagi, Yoshihisa Sugimura, Daisuke Yabe, Yoshitaka Hayashi and Atsushi Suzukiadd Show full author list remove Hide full author list
Nutrients 2022, 14(5), 975; https://doi.org/10.3390/nu14050975 - 25 Feb 2022
Cited by 8 | Viewed by 4646
Abstract
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response [...] Read more.
(1) Background: Protein stimulates the secretion of glucagon (GCG), which can affect glucose metabolism. This study aimed to analyze the metabolic effect of a high-protein diet (HPD) in the presence or absence of proglucagon-derived peptides, including GCG and GLP-1. (2) Methods: The response to HPD feeding for 7 days was analyzed in mice deficient in proglucagon-derived peptides (GCGKO). (3) Results: In both control and GCGKO mice, food intake and body weight decreased with HPD and intestinal expression of Pepck increased. HPD also decreased plasma FGF21 levels, regardless of the presence of proglucagon-derived peptides. In control mice, HPD increased the hepatic expression of enzymes involved in amino acid metabolism without the elevation of plasma amino acid levels, except branched-chain amino acids. On the other hand, HPD-induced changes in the hepatic gene expression were attenuated in GCGKO mice, resulting in marked hyperaminoacidemia with lower blood glucose levels; the plasma concentration of glutamine exceeded that of glucose in HPD-fed GCGKO mice. (4) Conclusions: Increased plasma amino acid levels are a common feature in animal models with blocked GCG activity, and our results underscore that GCG plays essential roles in the homeostasis of amino acid metabolism in response to altered protein intake. Full article
(This article belongs to the Section Proteins and Amino Acids)
Show Figures

Figure 1

27 pages, 2511 KiB  
Review
Glucagon Receptor Signaling and Glucagon Resistance
by Lina Janah, Sasha Kjeldsen, Katrine D. Galsgaard, Marie Winther-Sørensen, Elena Stojanovska, Jens Pedersen, Filip K. Knop, Jens J. Holst and Nicolai J. Wewer Albrechtsen
Int. J. Mol. Sci. 2019, 20(13), 3314; https://doi.org/10.3390/ijms20133314 - 5 Jul 2019
Cited by 142 | Viewed by 22902
Abstract
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role [...] Read more.
Hundred years after the discovery of glucagon, its biology remains enigmatic. Accurate measurement of glucagon has been essential for uncovering its pathological hypersecretion that underlies various metabolic diseases including not only diabetes and liver diseases but also cancers (glucagonomas). The suggested key role of glucagon in the development of diabetes has been termed the bihormonal hypothesis. However, studying tissue-specific knockout of the glucagon receptor has revealed that the physiological role of glucagon may extend beyond blood-glucose regulation. Decades ago, animal and human studies reported an important role of glucagon in amino acid metabolism through ureagenesis. Using modern technologies such as metabolomic profiling, knowledge about the effects of glucagon on amino acid metabolism has been expanded and the mechanisms involved further delineated. Glucagon receptor antagonists have indirectly put focus on glucagon’s potential role in lipid metabolism, as individuals treated with these antagonists showed dyslipidemia and increased hepatic fat. One emerging field in glucagon biology now seems to include the concept of hepatic glucagon resistance. Here, we discuss the roles of glucagon in glucose homeostasis, amino acid metabolism, and lipid metabolism and present speculations on the molecular pathways causing and associating with postulated hepatic glucagon resistance. Full article
(This article belongs to the Special Issue The Biology and Pharmacology of Glucagon)
Show Figures

Graphical abstract

11 pages, 1204 KiB  
Article
Effects of Whey Protein Hydrolysate Ingestion on Postprandial Aminoacidemia Compared with a Free Amino Acid Mixture in Young Men
by Kyosuke Nakayama, Chiaki Sanbongi and Shuji Ikegami
Nutrients 2018, 10(4), 507; https://doi.org/10.3390/nu10040507 - 19 Apr 2018
Cited by 15 | Viewed by 10905
Abstract
To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of [...] Read more.
To stimulate muscle protein synthesis, it is important to increase the plasma levels of essential amino acids (EAA), especially leucine, by ingesting proteins. Protein hydrolysate ingestion can induce postprandial hyperaminoacidemia; however, it is unclear whether protein hydrolysate is associated with higher levels of aminoacidemia compared with a free amino acid mixture when both are ingested orally. We assessed the effects of whey protein hydrolysate (WPH) ingestion on postprandial aminoacidemia, especially plasma leucine levels, compared to ingestion of a free amino acid mixture. This study was an open-label, randomized, 4 × 4 Latin square design. After 12–15 h of fasting, 11 healthy young men ingested the WPH (3.3, 5.0, or 7.5 g of protein) or the EAA mixture (2.5 g). Blood samples were collected before ingestion and at time points from 10 to 120 min after ingestion, and amino acids, insulin, glucose and insulin-like growth factor-1 (IGF-1) concentrations in plasma were measured. Even though the EAA mixture and 5.0 g of the WPH contained similar amounts of EAA and leucine, the WPH was associated with significantly higher plasma EAA and leucine levels. These results suggest that the WPH can induce a higher level of aminoacidemia compared with a free amino acid mixture when both are ingested orally. Full article
(This article belongs to the Special Issue Advances in Sport and Performance Nutrition)
Show Figures

Figure 1

18 pages, 813 KiB  
Review
Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training
by Tanner Stokes, Amy J. Hector, Robert W. Morton, Chris McGlory and Stuart M. Phillips
Nutrients 2018, 10(2), 180; https://doi.org/10.3390/nu10020180 - 7 Feb 2018
Cited by 202 | Viewed by 181355
Abstract
Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), [...] Read more.
Skeletal muscle supports locomotion and serves as the largest site of postprandial glucose disposal; thus it is a critical organ for physical and metabolic health. Skeletal muscle mass is regulated by the processes of muscle protein synthesis (MPS) and muscle protein breakdown (MPB), both of which are sensitive to external loading and aminoacidemia. Hyperaminoacidemia results in a robust but transient increase in rates of MPS and a mild suppression of MPB. Resistance exercise potentiates the aminoacidemia-induced rise in MPS that, when repeated over time, results in gradual radial growth of skeletal muscle (i.e., hypertrophy). Factors that affect MPS include both quantity and composition of the amino acid source. Specifically, MPS is stimulated in a dose-responsive manner and the primary amino acid agonist of this process is leucine. MPB also appears to be regulated in part by protein intake, which can exert a suppressive effect on MPB. At high protein doses the suppression of MPB may interfere with skeletal muscle adaptation following resistance exercise. In this review, we examine recent advancements in our understanding of how protein ingestion impacts skeletal muscle growth following resistance exercise in young adults during energy balance and energy restriction. We also provide practical recommendations for exercisers who wish to maximize the hypertrophic response of skeletal muscle during resistance exercise training. Full article
Show Figures

Figure 1

12 pages, 1718 KiB  
Article
Post-Exercise Muscle Protein Synthesis in Rats after Ingestion of Acidified Bovine Milk Compared with Skim Milk
by Kyosuke Nakayama, Atsushi Kanda, Ryoichi Tagawa, Chiaki Sanbongi, Shuji Ikegami and Hiroyuki Itoh
Nutrients 2017, 9(10), 1071; https://doi.org/10.3390/nu9101071 - 27 Sep 2017
Cited by 8 | Viewed by 7042
Abstract
Bovine milk proteins have a low absorption rate due to gastric acid-induced coagulation. Acidified milk remains liquid under acidic conditions; therefore, the absorption rate of its protein may differ from that of untreated milk. To investigate how this would affect muscle protein synthesis [...] Read more.
Bovine milk proteins have a low absorption rate due to gastric acid-induced coagulation. Acidified milk remains liquid under acidic conditions; therefore, the absorption rate of its protein may differ from that of untreated milk. To investigate how this would affect muscle protein synthesis (MPS), we compared MPS after ingestion of acidified versus skim milk in rats. Male Sprague-Dawley rats swam for 2 h and were immediately administered acidified or skim milk, then euthanized at 30, 60, 90, and 120 min afterwards. Triceps muscle samples were excised for assessing fractional synthetic rate (FSR), plasma components, intramuscular free amino acids and mTOR signaling. The FSR in the acidified milk group was significantly higher than in the skim milk group throughout the post-ingestive period. Plasma essential amino acids, leucine, and insulin levels were significantly increased in the acidified milk group at 30 min after administration compared to the skim milk group. In addition, acidified milk ingestion was associated with greater phosphorylation of protein kinase B (Akt) and ribosomal protein S6 kinase (S6K1), and sustained phosphorylation of 4E-binding protein 1 (4E-BP1). These results indicate that compared with untreated milk, acidified milk ingestion is associated with greater stimulation of post-exercise MPS. Full article
(This article belongs to the Special Issue Protein for Post-Exercise Recovery and Performance)
Show Figures

Figure 1

14 pages, 2027 KiB  
Article
A2 Milk Enhances Dynamic Muscle Function Following Repeated Sprint Exercise, a Possible Ergogenic Aid for A1-Protein Intolerant Athletes?
by Ben Kirk, Jade Mitchell, Matthew Jackson, Farzad Amirabdollahian, Omid Alizadehkhaiyat and Tom Clifford
Nutrients 2017, 9(2), 94; https://doi.org/10.3390/nu9020094 - 28 Jan 2017
Cited by 14 | Viewed by 12175
Abstract
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed [...] Read more.
Hyperaminoacidemia following ingestion of cows-milk may stimulate muscle anabolism and attenuate exercise-induced muscle damage (EIMD). However, as dairy-intolerant athletes do not obtain the reported benefits from milk-based products, A2 milk may offer a suitable alternative as it lacks the A1-protein. This study aimed to determine the effect of A2 milk on recovery from a sports-specific muscle damage model. Twenty-one male team sport players were allocated to three independent groups: A2 milk (n = 7), regular milk (n = 7), and placebo (PLA) (n = 7). Immediately following muscle-damaging exercise, participants consumed either A2 milk, regular milk or PLA (500 mL each). Visual analogue scale (muscle soreness), maximal voluntary isometric contraction (MVIC), countermovement jump (CMJ) and 20-m sprint were measured prior to and 24, 48, and 72 h post EIMD. At 48 h post-EIMD, CMJ and 20-m sprint recovered quicker in A2 (33.4 ± 6.6 and 3.3 ± 0.1, respectively) and regular milk (33.1 ± 7.1 and 3.3 ± 0.3, respectively) vs. PLA (29.2 ± 3.6 and 3.6 ± 0.3, respectively) (p < 0.05). Relative to baseline, decrements in 48 h CMJ and 20-m sprint were minimised in A2 (by 7.2 and 5.1%, respectively) and regular milk (by 6.3 and 5.2%, respectively) vs. PLA. There was a trend for milk treatments to attenuate decrements in MVIC, however statistical significance was not reached (p = 0.069). Milk treatments had no apparent effect on muscle soreness (p = 0.152). Following muscle-damaging exercise, ingestion of 500 mL of A2 or regular milk can limit decrements in dynamic muscle function in male athletes, thus hastening recovery and improving subsequent performance. The findings propose A2 milk as an ergogenic aid following EIMD, and may offer an alternative to athletes intolerant to the A1 protein. Full article
Show Figures

Figure 1

Back to TopTop