Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = hydrophobic copper mesh

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4290 KB  
Article
Multifunctional Green-Synthesized Cu2O-Cu(OH)2 Nanocomposites Grown on Cu Microfibers for Water Treatment Applications
by Hala Al-Jawhari, Nuha A. Alhebshi, Roaa Sait, Reem Altuwirqi, Laila Alrehaili, Noorah Al-Ahmadi and Nihal Elbialy
Micro 2025, 5(3), 33; https://doi.org/10.3390/micro5030033 - 5 Jul 2025
Viewed by 1059
Abstract
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and [...] Read more.
Free-standing copper oxide (Cu2O)-copper hydroxide (Cu(OH)2) nanocomposites with enhanced catalytic and antibacterial functionalities were synthesized on copper mesh using a green method based on spinach leaf extract and glycerol. EDX, SEM, and TEM analyses confirmed the chemical composition and morphology. The resulting Cu2O-Cu(OH)2@Cu mesh exhibited notable hydrophobicity, achieving a contact angle of 137.5° ± 0.6, and demonstrated the ability to separate thick oils, such as HD-40 engine oil, from water with a 90% separation efficiency. Concurrently, its photocatalytic performance was evaluated by the degradation of methylene blue (MB) under a weak light intensity of 5 mW/cm2, achieving 85.5% degradation within 30 min. Although its application as a functional membrane in water treatment may raise safety concerns, the mesh showed significant antibacterial activity against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria under both dark and light conditions. Using the disk diffusion method, strong bacterial inhibition was observed after 24 h of exposure in the dark. Upon visible light irradiation, bactericidal efficiency was further enhanced—by 17% for S. aureus and 2% for E. coli. These findings highlight the potential of the Cu2O-Cu(OH)2@Cu microfibers as a multifunctional membrane for industrial wastewater treatment, capable of simultaneously removing oil, degrading organic dyes, and inactivating pathogenic bacteria through photo-assisted processes. Full article
Show Figures

Figure 1

17 pages, 3907 KB  
Article
Tunable Wettability of Biodegradable Multilayer Sandwich-Structured Electrospun Nanofibrous Membranes
by A. K. M. Mashud Alam, Elena Ewaldz, Chunhui Xiang, Wangda Qu and Xianglan Bai
Polymers 2020, 12(9), 2092; https://doi.org/10.3390/polym12092092 - 15 Sep 2020
Cited by 22 | Viewed by 5382
Abstract
This research aims to develop multilayer sandwich-structured electrospun nanofiber (ENF) membranes using biodegradable polymers. Hydrophilic regenerated cellulose (RC) and hydrophobic poly (lactic acid) (PLA)-based novel multilayer sandwich-structures were created by electrospinning on various copper collectors, including copper foil and 30-mesh copper gauzes, to [...] Read more.
This research aims to develop multilayer sandwich-structured electrospun nanofiber (ENF) membranes using biodegradable polymers. Hydrophilic regenerated cellulose (RC) and hydrophobic poly (lactic acid) (PLA)-based novel multilayer sandwich-structures were created by electrospinning on various copper collectors, including copper foil and 30-mesh copper gauzes, to modify the surface roughness for tunable wettability. Different collectors yielded various sizes and morphologies of the fabricated ENFs with different levels of surface roughness. Bead-free thicker fibers were collected on foil collectors. The surface roughness of the fine fibers collected on mesh collectors contributed to an increase in hydrophobicity. An RC-based triple-layered structure showed a contact angle of 48.2°, which is comparable to the contact angle of the single-layer cellulosic fabrics (47.0°). The polar shift of RC membranes on the wetting envelope is indicative of the possibility of tuning the wetting behavior by creating multilayer structures. Wettability can be tuned by creating multilayer sandwich structures consisting of RC and PLA. This study provides an important insight into the manipulation of the wetting behavior of polymeric ENFs in multilayer structures for applications including chemical protective clothing. Full article
(This article belongs to the Special Issue Polymeric Materials for Filtration and Purification)
Show Figures

Figure 1

11 pages, 5574 KB  
Article
Efficient Oil Removal of Polymer Flooding Produced Sewerage Using Super-Hydrophobic Mesh Filtration Method
by Wanli Kang, Xin Kang, Hongbin Yang, Hailu Gebremariam and Zhe Li
Colloids Interfaces 2020, 4(3), 32; https://doi.org/10.3390/colloids4030032 - 2 Aug 2020
Cited by 1 | Viewed by 3186
Abstract
During the past 20 years, polymer flooding has become a successful enhanced oil recovery (EOR) technique for mature reservoirs with high water cut and recovery percent around the world. However, the high bulk viscosity of polymer solutions could slow down the separation rate [...] Read more.
During the past 20 years, polymer flooding has become a successful enhanced oil recovery (EOR) technique for mature reservoirs with high water cut and recovery percent around the world. However, the high bulk viscosity of polymer solutions could slow down the separation rate of the crude oil emulsion and make it difficult to treat the produced fluid. Consequently, the efficient removal of oil from the polymer flooding produced sewerage has still drawn significant concern. In this research, a high flux super-hydrophobic copper mesh was prepared using two-stage processes to treat the sewerage from polymer flooding. The surface of the super-hydrophobic mesh was characterized using various techniques including scanning electron microscope (SEM), OCA 20-contact angle goniometer, etc. Accordingly, the static contact angle of the super-hydrophobic copper mesh reached up to 165°. Moreover, the performances of the mesh were systematically evaluated under different internal and external factors such as oil to water volume ratio, polymer concentration, shear rate, and pH. The corresponding configuration and separation mechanisms are further explained in detail. The prepared superhydrophobic mesh can be a potential candidate for sewerage with both a polymer solution and crude oil. Full article
Show Figures

Figure 1

11 pages, 4958 KB  
Article
Hydrophobic and Anti-Fouling Performance of Surface on Parabolic Morphology
by Yu Li, Shengke Yang, Yangyang Chen and Dan Zhang
Int. J. Environ. Res. Public Health 2020, 17(2), 644; https://doi.org/10.3390/ijerph17020644 - 19 Jan 2020
Cited by 7 | Viewed by 3058
Abstract
The hydrophobicity and anti-fouling properties of materials have important application value in industrial and agricultural production and people’s daily life. To study the relationship between the unit width L0 of the parabolic hydrophobic material and the hydrophobicity and anti-fouling properties, the rough [...] Read more.
The hydrophobicity and anti-fouling properties of materials have important application value in industrial and agricultural production and people’s daily life. To study the relationship between the unit width L0 of the parabolic hydrophobic material and the hydrophobicity and anti-fouling properties, the rough surface structure of the parabolic with different widths was prepared by grinding with different SiC sandpapers, and further, to obtain hydrophobic materials through chemical oxidation and chemical etching, and modification with stearic acid (SA). The morphology, surface wetting and anti-fouling properties of the modified materials were characterized by SEM and contact angle measurement. The oil–water separation performance and self-cleaning performance of the materials were explored. The surface of the modified copper sheet forms a rough structure similar to a paraboloid. When ground with 1500 grit SiC sandpaper, it is more conducive to increase the hydrophobicity of the copper sheet surface and increase the contact angle of water droplets on the copper surface. Additionally, the self-cleaning and anti-fouling experiments showed that as L0 decreases, copper sheets were less able to stick to foreign things such as soil, and the better the self-cleaning and anti-fouling performance was. Based on the oil–water separation experiment of copper mesh, the lower L0 has a higher oil–water separation efficiency. The results showed that material with parabolic morphology has great self-cleaning, anti-fouling, and oil–water separation performance. The smaller the L0 was, the larger the contact angle and the better hydrophobic performance and self-cleaning performance were. Full article
Show Figures

Figure 1

12 pages, 12088 KB  
Article
Electrophoretic Deposition of Graphene Oxide on Laser-Ablated Copper Mesh for Enhanced Oil/Water Separation
by Rui Zhou, Fei Shen, Jingqin Cui, Yonggang Zhang, Huangping Yan and Segovia Sanchez Juan Carlos
Coatings 2019, 9(3), 157; https://doi.org/10.3390/coatings9030157 - 28 Feb 2019
Cited by 13 | Viewed by 4522
Abstract
The fabrication of bionic surfaces resembling hydrophobic plants through micro manufacturing, which creates abundant multi-level micro/nanostructures and elemental variations, has been widely employed to change the surface wettability of metallic materials. Based on the mechanisms for selective permeation of various liquids, it could [...] Read more.
The fabrication of bionic surfaces resembling hydrophobic plants through micro manufacturing, which creates abundant multi-level micro/nanostructures and elemental variations, has been widely employed to change the surface wettability of metallic materials. Based on the mechanisms for selective permeation of various liquids, it could achieve the function of oil/water separation. Herein, a separation copper membrane fabricated with pulsed laser ablation and modified with graphene oxide (GO) deposition showed a synergetic effect on tunable surface wettability. Micro/nanostructures were generated on the copper substrate membrane through concentric circular scanning, which was followed by hole drilling. Afterwards, charged GO nanosheets were deposited via electrophoresis. The spacing of circular lines, the diameter of the holes and the abundant high-surface-energy hydrophilic oxygen contained in deposited GO amounts could be regulated in the laser processing and deposition, resulting in oleophobicity and hydrophilicity at the same time. The highest contact angle of oil in water of the prepared mesh could reach above 165° with a hole size of 200 µm and a circular line spacing of 100 µm after the laser processing. Water flux and oil-holding capacity, which represent the separation capability of the mesh, were also evaluated. The as-prepared separation mesh also showed great stability under harsh environments. Full article
Show Figures

Graphical abstract

15 pages, 4514 KB  
Article
Preparation of Parabolic Superhydrophobic Material for Oil-Water Separation
by Xiaoying Qiao, Chunyan Yang, Qian Zhang, Shengke Yang, Yangyang Chen, Dan Zhang, Xiaoyu Yuan, Wenke Wang and Yaqian Zhao
Materials 2018, 11(10), 1914; https://doi.org/10.3390/ma11101914 - 9 Oct 2018
Cited by 13 | Viewed by 3634
Abstract
In order to prepare parabolic superhydrophobic materials, copper meshes were used as the substrate and ultrasonic etching and oxidative corrosion were carried out with FeCl3 solution and H2O2 solution, respectively, and then the surface was modified with stearic acid [...] Read more.
In order to prepare parabolic superhydrophobic materials, copper meshes were used as the substrate and ultrasonic etching and oxidative corrosion were carried out with FeCl3 solution and H2O2 solution, respectively, and then the surface was modified with stearic acid (SA). The topological structure and surface wettability of the prepared mesh were characterized by fluorescence microscope, scanning electron microscopy and contact angle measurement. Finally, the as-prepared copper meshes were applied to oil-water separation. The results showed that the micro-nano-mastoid structure on the surface of the copper mesh was flaky bulges, forming a rough structure similar to a paraboloid. When the oxidative corrosion time of H2O2 was 1 min, it is more beneficial to increase the hydrophobicity of the surface of the copper mesh and increase the contact angle of water droplets on the surface of the membrane. Additionally, based on superhydrophobic materials of the parabolic copper mesh, the static contact angles of the water droplets, engine oil and carbon tetrachloride with the surface were approximately 153.6°, 5° and 0.1°, respectively and the sliding angle of the water droplets with the surface were approximately 4.9°. The parabolic membrane was applied to discuss the separation efficiency of different oils with deionized water and the separation efficiency was obtained as benzene > carbon tetrachloride > oil > machine oil. Therefore, based on the research, the parabolic superhydrophobic material has good efficiency of oil-water separation. Full article
(This article belongs to the Special Issue Self-Cleaning Surfaces)
Show Figures

Figure 1

Back to TopTop