Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = hydrogel carbonated hydroxyapatite–chitosan

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 948 KB  
Review
Use of Biomaterials in 3D Printing as a Solution to Microbial Infections in Arthroplasty and Osseous Reconstruction
by Argyrios Periferakis, Aristodemos-Theodoros Periferakis, Lamprini Troumpata, Serban Dragosloveanu, Iosif-Aliodor Timofticiuc, Spyrangelos Georgatos-Garcia, Andreea-Elena Scheau, Konstantinos Periferakis, Ana Caruntu, Ioana Anca Badarau, Cristian Scheau and Constantin Caruntu
Biomimetics 2024, 9(3), 154; https://doi.org/10.3390/biomimetics9030154 - 1 Mar 2024
Cited by 29 | Viewed by 5370
Abstract
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for [...] Read more.
The incidence of microbial infections in orthopedic prosthetic surgeries is a perennial problem that increases morbidity and mortality, representing one of the major complications of such medical interventions. The emergence of novel technologies, especially 3D printing, represents a promising avenue of development for reducing the risk of such eventualities. There are already a host of biomaterials, suitable for 3D printing, that are being tested for antimicrobial properties when they are coated with bioactive compounds, such as antibiotics, or combined with hydrogels with antimicrobial and antioxidant properties, such as chitosan and metal nanoparticles, among others. The materials discussed in the context of this paper comprise beta-tricalcium phosphate (β-TCP), biphasic calcium phosphate (BCP), hydroxyapatite, lithium disilicate glass, polyetheretherketone (PEEK), poly(propylene fumarate) (PPF), poly(trimethylene carbonate) (PTMC), and zirconia. While the recent research results are promising, further development is required to address the increasing antibiotic resistance exhibited by several common pathogens, the potential for fungal infections, and the potential toxicity of some metal nanoparticles. Other solutions, like the incorporation of phytochemicals, should also be explored. Incorporating artificial intelligence (AI) in the development of certain orthopedic implants and the potential use of AI against bacterial infections might represent viable solutions to these problems. Finally, there are some legal considerations associated with the use of biomaterials and the widespread use of 3D printing, which must be taken into account. Full article
Show Figures

Figure 1

14 pages, 1751 KB  
Article
Post-Orthodontic Relapse Prevention through Administration of a Novel Synthetic Carbonated Hydroxyapatite–Chitosan Hydrogel Derived from Blood Cockle Shell (Anadara granosa L.)
by Aanisah Fauziyyah Nurul Hadi, Sabrina Noor Aghniya, Gayuh Abi Haidar, Windy Sepry Marcelina Sihombing, Angelina Sutedjo and Ananto Ali Alhasyimi
Dent. J. 2024, 12(1), 18; https://doi.org/10.3390/dj12010018 - 19 Jan 2024
Cited by 6 | Viewed by 3278
Abstract
Relapse during passive orthodontic treatment is a major issue, with 70–90% frequency. This study examines whether blood cockle shells may be used to extract carbonated hydroxyapatite (CHA)-chitosan (CS). This study also aims to analyze the effect of CHA-CS on orthodontic relapse in rats. [...] Read more.
Relapse during passive orthodontic treatment is a major issue, with 70–90% frequency. This study examines whether blood cockle shells may be used to extract carbonated hydroxyapatite (CHA)-chitosan (CS). This study also aims to analyze the effect of CHA-CS on orthodontic relapse in rats. This study utilized 18 male Wistar rats which were randomly divided into two groups: CHA-CS and the control group (CG). The rats were subjected to a 35 cN orthodontic force for a duration of 7 days, after which the rats were conditioned to be passive. During this phase, the CHA-CS group received daily administration of CHA-CS hydrogel derived from the blood cockle shell. Subsequently, the appliances were detached to facilitate relapse. The distance between the mesial tips was measured using a digital caliper at three consecutive time points: 1, 5, and 7 days after debonding. The number of osteoblasts, osteoclasts, and fibroblasts was examined using hematoxylin–eosin staining. The data were subjected to statistical analysis using a t-test. The relapse distance of the CHA-CS group was lower than that of the control groups on day 7. Histological examinations using hematoxylin–eosin (HE) staining showed a significant increase in osteoblasts, a decrease in osteoclasts, and an increase in fibroblasts during orthodontic relapse movement (p < 0.05). This study found that blood cockle shell-derived CHA-CS may reduce orthodontic relapse by increasing osteoblasts and fibroblasts and by reducing the osteoclast number in rats. Full article
(This article belongs to the Section Dental Materials)
Show Figures

Graphical abstract

18 pages, 3558 KB  
Review
Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review
by Antonia Ressler
Polymers 2022, 14(16), 3430; https://doi.org/10.3390/polym14163430 - 22 Aug 2022
Cited by 120 | Viewed by 11947
Abstract
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are [...] Read more.
Natural bone tissue is composed of calcium-deficient carbonated hydroxyapatite as the inorganic phase and collagen type I as the main organic phase. The biomimetic approach of scaffold development for bone tissue engineering application is focused on mimicking complex bone characteristics. Calcium phosphates are used in numerous studies as bioactive phases to mimic natural bone mineral. In order to mimic the organic phase, synthetic (e.g., poly(ε-caprolactone), polylactic acid, poly(lactide-co-glycolide acid)) and natural (e.g., alginate, chitosan, collagen, gelatin, silk) biodegradable polymers are used. However, as materials obtained from natural sources are accepted better by the human organism, natural polymers have attracted increasing attention. Over the last three decades, chitosan was extensively studied as a natural polymer suitable for biomimetic scaffold development for bone tissue engineering applications. Different types of chitosan-based biomaterials (e.g., molded macroporous, fiber-based, hydrogel, microspheres and 3D-printed) with specific properties for different regenerative applications were developed due to chitosan’s unique properties. This review summarizes the state-of-the-art of biomaterials for bone regeneration and relevant studies on chitosan-based materials and composites. Full article
(This article belongs to the Special Issue Biomaterials for Tissue Engineering and Regeneration)
Show Figures

Figure 1

11 pages, 900 KB  
Review
Bone Healing Materials in the Treatment of Recalcitrant Nonunions and Bone Defects
by Emérito Carlos Rodríguez-Merchán
Int. J. Mol. Sci. 2022, 23(6), 3352; https://doi.org/10.3390/ijms23063352 - 20 Mar 2022
Cited by 63 | Viewed by 6174
Abstract
The usual treatment for bone defects and recalcitrant nonunions is an autogenous bone graft. However, due to the limitations in obtaining autogenous bone grafts and the morbidity associated with their procurement, various bone healing materials have been developed in recent years. The three [...] Read more.
The usual treatment for bone defects and recalcitrant nonunions is an autogenous bone graft. However, due to the limitations in obtaining autogenous bone grafts and the morbidity associated with their procurement, various bone healing materials have been developed in recent years. The three main treatment strategies for bone defects and recalcitrant nonunions are synthetic bone graft substitutes (BGS), BGS combined with bioactive molecules, and BGS and stem cells (cell-based constructs). Regarding BGS, numerous biomaterials have been developed to prepare bone tissue engineering scaffolds, including biometals (titanium, iron, magnesium, zinc), bioceramics (hydroxyapatite (HA)), tricalcium phosphate (TCP), biopolymers (collagen, polylactic acid (PLA), polycaprolactone (PCL)), and biocomposites (HA/MONs@miR-34a composite coating, Bioglass (BG)-based ABVF-BG (antibiotic-releasing bone void filling) putty). Bone tissue engineering scaffolds are temporary implants that promote tissue ingrowth and new bone regeneration. They have been developed to improve bone healing through appropriate designs in terms of geometric, mechanical, and biological performance. Concerning BGS combined with bioactive molecules, one of the most potent osteoinductive growth factors is bone morphogenetic proteins (BMPs). In recent years, several natural (collagen, fibrin, chitosan, hyaluronic acid, gelatin, and alginate) and synthetic polymers (polylactic acid, polyglycolic acid, polylactic-coglycolide, poly(e-caprolactone) (PCL), poly-p-dioxanone, and copolymers consisting of glycolide/trimethylene carbonate) have been investigated as potential support materials for bone tissue engineering. Regarding BGS and stem cells (cell-based constructs), the main strategies are bone marrow stromal cells, adipose-derived mesenchymal cells, periosteum-derived stem cells, and 3D bioprinting of hydrogels and cells or bioactive molecules. Currently, significant research is being performed on the biological treatment of recalcitrant nonunions and bone defects, although its use is still far from being generalized. Further research is needed to investigate the efficacy of biological treatments to solve recalcitrant nonunions and bone defects. Full article
(This article belongs to the Special Issue Research on Bone Healing Materials)
Show Figures

Figure 1

20 pages, 55679 KB  
Article
A Chitosan–Agarose Polysaccharide-Based Hydrogel for Biomimetic Remineralization of Dental Enamel
by Viorica Muşat, Elena Maria Anghel, Agripina Zaharia, Irina Atkinson, Oana Cătălina Mocioiu, Mariana Buşilă and Petrică Alexandru
Biomolecules 2021, 11(8), 1137; https://doi.org/10.3390/biom11081137 - 2 Aug 2021
Cited by 54 | Viewed by 6871
Abstract
Developing multifunctional systems for the biomimetic remineralization of human enamel is a challenging task, since hydroxyapatite (HAP) rod structures of tooth enamel are difficult to replicate artificially. The paper presents the first report on the simultaneous use of chitosan (CS) and agarose (A) [...] Read more.
Developing multifunctional systems for the biomimetic remineralization of human enamel is a challenging task, since hydroxyapatite (HAP) rod structures of tooth enamel are difficult to replicate artificially. The paper presents the first report on the simultaneous use of chitosan (CS) and agarose (A) in a biopolymer-based hydrogel for the biomimetic remineralization of an acid-etched native enamel surface during 4–10-day immersion in artificial saliva with or without (control group) fluoride. Scanning electron microscopy coupled with energy-dispersive X-ray spectrometry, Fourier transform infrared and Raman spectroscopies, X-ray diffraction, and microhardness tests were applied to investigate the properties of the acid-etched and remineralized dental enamel layers under A and CS-A hydrogels. The results show that all biomimetic epitaxial reconstructed layers consist mostly of a similar hierarchical HAP structure to the native enamel from nano- to microscale. An analogous Ca/P ratio (1.64) to natural tooth enamel and microhardness recovery of 77.4% of the enamel-like layer are obtained by a 7-day remineralization process in artificial saliva under CS-A hydrogels. The CS component reduced carbonation and moderated the formation of HAP nanorods in addition to providing an extracellular matrix to support growing enamel-like structures. Such activity lacked in samples exposed to A-hydrogel only. These data suggest the potential of the CS-A hydrogel in guiding the formation of hard tissues as dental enamel. Full article
Show Figures

Graphical abstract

Back to TopTop