Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = hydride-donating ability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 750 KB  
Communication
Comparison of the Hydride-Donating Ability and Activity of Five- and Six-Membered Benzoheterocyclic Compounds in Acetonitrile
by Jin-Ye Zhang and Xiao-Qing Zhu
Molecules 2022, 27(21), 7252; https://doi.org/10.3390/molecules27217252 - 25 Oct 2022
Cited by 1 | Viewed by 1651
Abstract
In this work, we compared the hydride-donating ability of five-membered benzoheterocyclic compounds (FMB) and six-membered benzoheterocyclic compounds (SMB), isomers of DMBI and DMIZ and of DMPZ and DMPX, using detailed thermodynamic driving forces [ΔGo (XH)], kinetic intrinsic barriers (ΔGXH/X), [...] Read more.
In this work, we compared the hydride-donating ability of five-membered benzoheterocyclic compounds (FMB) and six-membered benzoheterocyclic compounds (SMB), isomers of DMBI and DMIZ and of DMPZ and DMPX, using detailed thermodynamic driving forces [ΔGo (XH)], kinetic intrinsic barriers (ΔGXH/X), and thermo-kinetic parameters [ΔG° (XH)]. For DMBI and DMIZ, the values of ΔGo (XH), ΔGXH/X, and ΔG° (XH) are 49.2 and 53.7 kcal/mol, 35.88 and 42.04 kcal/mol, and 42.54 and 47.87 kcal/mol, respectively. For DMPZ and DMPX, the values of ΔGo (XH), ΔGXH/X, and ΔG° (XH) are 73.2 and 79.5 kcal/mol, 35.34 and 25.02 kcal/mol, and 54.27 and 52.26 kcal/mol, respectively. It is easy to see that the FMB isomers are thermodynamically dominant and that the SMB isomers are kinetically dominant. Moreover, according to the analysis of ΔG° (XH), compared to the SMB isomers, the FMB isomers have a stronger hydride-donating ability in actual chemical reactions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

7 pages, 799 KB  
Communication
Comparison between 1,2-Dihydropyridine and 1,4-Dihydropyridine on Hydride-Donating Ability and Activity
by Jin-Ye Zhang and Xiao-Qing Zhu
Molecules 2022, 27(17), 5382; https://doi.org/10.3390/molecules27175382 - 24 Aug 2022
Cited by 4 | Viewed by 3252
Abstract
In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving [...] Read more.
In this paper, detailed comparisons of the driving force in thermodynamics and intrinsic force in the kinetics of 1,2-dihydropyridine and 1,4-dihydropyridine isomers of PNAH, HEH, and PYH in hydride transfer reactions are made. For 1,2-PNAH and 1,4-PNAH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 60.50 and 61.90 kcal/mol, 27.92 and 26.34 kcal/mol, and 44.21 and 44.12 kcal/mol, respectively. For 1,2-HEH and 1,4-HEH, the values of the thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 63.40 and 65.00 kcal/mol, 31.68 and 34.96 kcal/mol, and 47.54 and 49.98 kcal/mol, respectively. For 1,2-PYH and 1,4-PYH, the order of thermodynamic driving forces, kinetic intrinsic barriers, and thermo-kinetic parameters are 69.90 and 72.60 kcal/mol, 33.06 and 25.74 kcal/mol, and 51.48 and 49.17 kcal/mol, respectively. It is not difficult to find that thermodynamically favorable structures are not necessarily kinetically favorable. In addition, according to the analysis of thermo-kinetic parameters, 1,4-PNAH, 1,2-HEH, and 1,4-PYH have a strong hydride-donating ability in actual chemical reactions. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

20 pages, 3121 KB  
Article
Thermodynamic Hydricity of Small Borane Clusters and Polyhedral closo-Boranes
by Igor E. Golub, Oleg A. Filippov, Vasilisa A. Kulikova, Natalia V. Belkova, Lina M. Epstein and Elena S. Shubina
Molecules 2020, 25(12), 2920; https://doi.org/10.3390/molecules25122920 - 25 Jun 2020
Cited by 16 | Viewed by 5422
Abstract
Thermodynamic hydricity (HDAMeCN) determined as Gibbs free energy (ΔG°[H]) of the H detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up to 5 boron atoms), polyhedral closo-boranes dianions [BnHn] [...] Read more.
Thermodynamic hydricity (HDAMeCN) determined as Gibbs free energy (ΔG°[H]) of the H detachment reaction in acetonitrile (MeCN) was assessed for 144 small borane clusters (up to 5 boron atoms), polyhedral closo-boranes dianions [BnHn]2−, and their lithium salts Li2[BnHn] (n = 5–17) by DFT method [M06/6-311++G(d,p)] taking into account non-specific solvent effect (SMD model). Thermodynamic hydricity values of diborane B2H6 (HDAMeCN = 82.1 kcal/mol) and its dianion [B2H6]2− (HDAMeCN = 40.9 kcal/mol for Li2[B2H6]) can be selected as border points for the range of borane clusters’ reactivity. Borane clusters with HDAMeCN below 41 kcal/mol are strong hydride donors capable of reducing CO2 (HDAMeCN = 44 kcal/mol for HCO2), whereas those with HDAMeCN over 82 kcal/mol, predominately neutral boranes, are weak hydride donors and less prone to hydride transfer than to proton transfer (e.g., B2H6, B4H10, B5H11, etc.). The HDAMeCN values of closo-boranes are found to directly depend on the coordination number of the boron atom from which hydride detachment and stabilization of quasi-borinium cation takes place. In general, the larger the coordination number (CN) of a boron atom, the lower the value of HDAMeCN. Full article
Show Figures

Graphical abstract

11 pages, 2029 KB  
Communication
NHI- and NHC-Supported Al(III) Hydrides for Amine–Borane Dehydrocoupling Catalysis
by Catherine Weetman, Nozomi Ito, Masafumi Unno, Franziska Hanusch and Shigeyoshi Inoue
Inorganics 2019, 7(8), 92; https://doi.org/10.3390/inorganics7080092 - 24 Jul 2019
Cited by 14 | Viewed by 5677
Abstract
The catalytic dehydrocoupling of amine–boranes has recently received a great deal of attention due to its potential in hydrogen storage applications. The use of aluminum catalysts for this transformation would provide an additional cost-effective and sustainable approach towards the hydrogen economy. Herein, we [...] Read more.
The catalytic dehydrocoupling of amine–boranes has recently received a great deal of attention due to its potential in hydrogen storage applications. The use of aluminum catalysts for this transformation would provide an additional cost-effective and sustainable approach towards the hydrogen economy. Herein, we report the use of both N-heterocyclic imine (NHI)- and carbene (NHC)-supported Al(III) hydrides and their role in the catalytic dehydrocoupling of Me2NHBH3. Differences in the σ-donating ability of the ligand class resulted in a more stable catalyst for NHI-Al(III) hydrides, whereas a deactivation pathway was found in the case of NHC-Al(III) hydrides. Full article
(This article belongs to the Special Issue Organoaluminum Compounds)
Show Figures

Graphical abstract

Back to TopTop