Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = huntingtin-lowering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1237 KiB  
Review
Rodent Models of Huntington’s Disease: An Overview
by Giulio Nittari, Proshanta Roy, Ilenia Martinelli, Vincenzo Bellitto, Daniele Tomassoni, Enea Traini, Seyed Khosrow Tayebati and Francesco Amenta
Biomedicines 2023, 11(12), 3331; https://doi.org/10.3390/biomedicines11123331 - 16 Dec 2023
Cited by 11 | Viewed by 4401
Abstract
Huntington’s disease (HD) is an autosomal-dominant inherited neurological disorder caused by a genetic mutation in the IT15 gene. This neurodegenerative disorder is caused by a polyglutamine repeat expansion mutation in the widely expressed huntingtin (HTT) protein. HD is characterized by the degeneration of [...] Read more.
Huntington’s disease (HD) is an autosomal-dominant inherited neurological disorder caused by a genetic mutation in the IT15 gene. This neurodegenerative disorder is caused by a polyglutamine repeat expansion mutation in the widely expressed huntingtin (HTT) protein. HD is characterized by the degeneration of basal ganglia neurons and progressive cell death in intrinsic neurons of the striatum, accompanied by dementia and involuntary abnormal choreiform movements. Animal models have been extensively studied and have proven to be extremely valuable for therapeutic target evaluations. They reveal the hallmark of the age-dependent formation of aggregates or inclusions consisting of misfolded proteins. Animal models of HD have provided a therapeutic strategy to treat HD by suppressing mutant HTT (mHTT). Transgenic animal models have significantly increased our understanding of the molecular processes and pathophysiological mechanisms underlying the HD behavioral phenotype. Since effective therapies to cure or interrupt the course of the disease are not yet available, clinical research will have to make use of reliable animal models. This paper reviews the main studies of rodents as HD animal models, highlighting the neurological and behavioral differences between them. The choice of an animal model depends on the specific aspect of the disease to be investigated. Toxin-based models can still be useful, but most experimental hypotheses depend on success in a genetic model, whose choice is determined by the experimental question. There are many animal models showing similar HD symptoms or pathologies. They include chemical-induced HDs and genetic HDs, where cell-free and cell culture, lower organisms (such as yeast, Drosophila, C. elegans, zebrafish), rodents (mice, rats), and non-human primates are involved. These models provide accessible systems to study molecular pathogenesis and test potential treatments. For developing more effective pharmacological treatments, better animal models must be available and used to evaluate the efficacy of drugs. Full article
Show Figures

Figure 1

19 pages, 4762 KiB  
Article
Cyclodextrin-Based Nanoparticles for Delivery of Antisense Oligonucleotides Targeting Huntingtin
by Monique C. P. Mendonça, Yao Sun, Michael F. Cronin, Andrew J. Lindsay, John F. Cryan and Caitriona M. O’Driscoll
Pharmaceutics 2023, 15(2), 520; https://doi.org/10.3390/pharmaceutics15020520 - 3 Feb 2023
Cited by 12 | Viewed by 4051
Abstract
Huntington’s disease (HD) is a progressive inherited neurodegenerative disease caused by a CAG repeat expansion in the huntingtin gene, which is translated into the pathologic mutant huntingtin (mHTT) protein. Despite the great potential of HTT lowering strategies and the numerous antisense oligonucleotides (ASOs) [...] Read more.
Huntington’s disease (HD) is a progressive inherited neurodegenerative disease caused by a CAG repeat expansion in the huntingtin gene, which is translated into the pathologic mutant huntingtin (mHTT) protein. Despite the great potential of HTT lowering strategies and the numerous antisense oligonucleotides (ASOs) in pre- and clinical trials, sustained silencing of mHTT has not been achieved. As a strategy to improve ASO delivery, cyclodextrin-based nanoparticles (CDs) offer a promising approach. Here, three CDs with distinct chemical structures were designed and their efficacies were compared as potential platforms for the delivery of ASO targeting HTT. Results using striatal neurons and HD patient-derived fibroblasts indicate that modified γ-CDs exhibited the best uptake efficiency and successfully downregulated mHTT at protein and allele levels. The incorporation of the brain-targeting peptide RVG into the modified γ-CDs showed greater downregulation of mHTT protein and HD-causing allele SNP1 than untargeted ones in an in vitro blood–brain barrier model. Although the ASO sequence was designed as a nonallele-specific therapeutic approach, our strategy gives an additional benefit of some mHTT selectivity. Overall, this study demonstrated the CD platform’s feasibility for delivering ASO-based therapeutics for HD treatment. Full article
(This article belongs to the Special Issue Recent Trends in Oligonucleotide Based Therapies)
Show Figures

Graphical abstract

20 pages, 4782 KiB  
Article
Phospholipid Profiles Are Selectively Altered in the Putamen and White Frontal Cortex of Huntington’s Disease
by Gabrielle R. Phillips, Sarah E. Hancock, Andrew M. Jenner, Catriona McLean, Kelly A. Newell and Todd W. Mitchell
Nutrients 2022, 14(10), 2086; https://doi.org/10.3390/nu14102086 - 16 May 2022
Cited by 6 | Viewed by 3090
Abstract
Huntington’s disease (HD) is a genetic, neurodegenerative illness that onsets in late adulthood as a series of progressive and terminal cognitive, motor, and psychiatric deficits. The disease is caused by a polyQ mutation in the Huntingtin gene (HTT), producing a polyglutamine [...] Read more.
Huntington’s disease (HD) is a genetic, neurodegenerative illness that onsets in late adulthood as a series of progressive and terminal cognitive, motor, and psychiatric deficits. The disease is caused by a polyQ mutation in the Huntingtin gene (HTT), producing a polyglutamine expansion in the Huntingtin protein (HTT). HTT interacts with phospholipids in vitro; however, its interactions are changed when the protein is mutated in HD. Emerging evidence suggests that the susceptibility of brain regions to pathological stimuli is influenced by lipid composition. This study aimed to identify where and how phospholipids are changed in human HD brain tissue. Phospholipids were extracted using a modified MTBE method from the post-mortem brain of 13 advanced-stage HD patients and 13 age- and sex-matched controls. Targeted precursor ion scanning mass spectrometry was used to detect phospholipid species. In the white cortex of HD patients, there was a significantly lower abundance of phosphatidylcholine (PC) and phosphatidylserine (PS), but no difference in phosphatidylethanolamine (PE). In HD putamen, ester-linked 22:6 was lower in all phospholipid classes promoting a decrease in the relative abundance of ester polyunsaturated fatty acids in PE. No differences in phospholipid composition were identified in the caudate, grey cortex or cerebellum. Ether-linked PE fatty acids appear protected in the HD brain, as no changes were identified. The nature of phospholipid alterations in the HD brain is dependent on the lipid (subclass, species, and bond type) and the location. Full article
(This article belongs to the Special Issue Update on Fatty Acids and the Brain)
Show Figures

Figure 1

18 pages, 27873 KiB  
Communication
Posiphen Reduces the Levels of Huntingtin Protein through Translation Suppression
by Xu-Qiao Chen, Carlos A. Barrero, Rodrigo Vasquez-Del Carpio, E. Premkumar Reddy, Chiara Fecchio, Salim Merali, Alessia Deglincerti, Cheng Fang, Jack Rogers and Maria L. Maccecchini
Pharmaceutics 2021, 13(12), 2109; https://doi.org/10.3390/pharmaceutics13122109 - 7 Dec 2021
Cited by 7 | Viewed by 5152
Abstract
Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen [...] Read more.
Posiphen tartrate (Posiphen) is an orally available small molecule that targets a conserved regulatory element in the mRNAs of amyloid precursor protein (APP) and α-synuclein (αSYN) and inhibits their translation. APP and αSYN can cause neurodegeneration when their aggregates induce neurotoxicity. Therefore, Posiphen is a promising drug candidate for neurodegenerative diseases, including Alzheimer’s disease and Parkinson’s disease. Posiphen’s safety has been demonstrated in three independent phase I clinical trials. Moreover, in a proof of concept study, Posiphen lowered neurotoxic proteins and inflammatory markers in cerebrospinal fluid of mild cognitive impaired patients. Herein we investigated whether Posiphen reduced the expression of other proteins, as assessed by stable isotope labeling with amino acids in cell culture (SILAC) followed by mass spectrometry (MS)-based proteomics. Neuroblastoma SH-SY5Y cells, an in vitro model of neuronal function, were used for the SILAC protein profiling response. Proteins whose expression was altered by Posiphen treatment were characterized for biological functions, pathways and networks analysis. The most significantly affected pathway was the Huntington’s disease signaling pathway, which, along with huntingtin (HTT) protein, was down-regulated by Posiphen in the SH-SY5Y cells. The downregulation of HTT protein by Posiphen was confirmed by quantitative Western blotting and immunofluorescence. Unchanged mRNA levels of HTT and a comparable decay rate of HTT proteins after Posiphen treatment supported the coclusion that Posiphen reduced HTT via downregulation of the translation of HTT mRNA. Meanwhile, the downregulation of APP and αSYN proteins by Posiphen was also confirmed. The mRNAs encoding HTT, APP and αSYN contain an atypical iron response element (IRE) in their 5′-untranslated regions (5′-UTRs) that bind iron regulatory protein 1 (IRP1), and Posiphen specifically bound this complex. Conversely, Posiphen did not bind the IRP1/IRE complex of mRNAs with canonical IREs, and the translation of these mRNAs was not affected by Posiphen. Taken together, Posiphen shows high affinity binding to the IRE/IRP1 complex of mRNAs with an atypical IRE stem loop, inducing their translation suppression, including the mRNAs of neurotoxic proteins APP, αSYN and HTT. Full article
Show Figures

Figure 1

20 pages, 2714 KiB  
Article
C57BL/6 Background Attenuates mHTT Toxicity in the Striatum of YAC128 Mice
by Michaela K. Back, Johanna Kurzawa, Sonia Ruggieri and Jakob von Engelhardt
Int. J. Mol. Sci. 2021, 22(23), 12664; https://doi.org/10.3390/ijms222312664 - 23 Nov 2021
Cited by 4 | Viewed by 3071
Abstract
Mouse models are frequently used to study Huntington’s disease (HD). The onset and severity of neuronal and behavioral pathologies vary greatly between HD mouse models, which results from different huntingtin expression levels and different CAG repeat length. HD pathology appears to depend also [...] Read more.
Mouse models are frequently used to study Huntington’s disease (HD). The onset and severity of neuronal and behavioral pathologies vary greatly between HD mouse models, which results from different huntingtin expression levels and different CAG repeat length. HD pathology appears to depend also on the strain background of mouse models. Thus, behavioral deficits of HD mice are more severe in the FVB than in the C57BL/6 background. Alterations in medium spiny neuron (MSN) morphology and function have been well documented in young YAC128 mice in the FVB background. Here, we tested the relevance of strain background for mutant huntingtin (mHTT) toxicity on the cellular level by investigating HD pathologies in YAC128 mice in the C57BL/6 background (YAC128/BL6). Morphology, spine density, synapse function and membrane properties were not or only subtly altered in MSNs of 12-month-old YAC128/BL6 mice. Despite the mild cellular phenotype, YAC128/BL6 mice showed deficits in motor performance. More pronounced alterations in MSN function were found in the HdhQ150 mouse model in the C57BL/6 background (HdhQ150/BL6). Consistent with the differences in HD pathology, the number of inclusion bodies was considerably lower in YAC128/BL6 mice than HdhQ150/BL6 mice. This study highlights the relevance of strain background for mHTT toxicity in HD mouse models. Full article
(This article belongs to the Special Issue Molecular Research on Huntington’s Disease)
Show Figures

Figure 1

13 pages, 647 KiB  
Review
The Cytotoxicity and Clearance of Mutant Huntingtin and Other Misfolded Proteins
by Austin Folger and Yanchang Wang
Cells 2021, 10(11), 2835; https://doi.org/10.3390/cells10112835 - 21 Oct 2021
Cited by 23 | Viewed by 6108
Abstract
Protein misfolding and aggregation are implicated in many neurodegenerative diseases. One of these diseases is Huntington’s, which is caused by increased glutamine-encoding trinucleotide repeats within the Huntingtin gene. Like other misfolded proteins, mutated Huntingtin proteins with polyglutamine expansions are prone to aggregation. Misfolded [...] Read more.
Protein misfolding and aggregation are implicated in many neurodegenerative diseases. One of these diseases is Huntington’s, which is caused by increased glutamine-encoding trinucleotide repeats within the Huntingtin gene. Like other misfolded proteins, mutated Huntingtin proteins with polyglutamine expansions are prone to aggregation. Misfolded proteins exist as soluble monomers, small aggregates, or as large insoluble inclusion bodies. Misfolded protein aggregates are believed to be cytotoxic by stressing the protein degradation machinery, disrupting membrane structure, or sequestering other proteins. We recently showed that expression of misfolded proteins lowers cellular free ubiquitin levels, which compromises the protein degradation machinery. Therefore, the efficient degradation of misfolded proteins is critical to preserve cell health. Cells employ two major mechanisms to degrade misfolded proteins. The first is the ubiquitin-proteasome system (UPS), which ubiquitinates and degrades misfolded proteins with the assistance of segregase Cdc48/p97. The UPS pathway is mainly responsible for the clearance of misfolded proteins present as monomers or smaller aggregates. The second pathway is macroautophagy/autophagy, in which protein aggregates or inclusion bodies are recruited into an autophagosome before transport to the vacuole/lysosome for degradation. This review is focused on the current understanding of the cytotoxicity of misfolded proteins as well as their clearance pathways, with a particular emphasis on mutant Huntingtin. Full article
Show Figures

Figure 1

16 pages, 5035 KiB  
Article
Decreased Interactions between Calmodulin and a Mutant Huntingtin Model Might Reduce the Cytotoxic Level of Intracellular Ca2+: A Molecular Dynamics Study
by Sanda Nastasia Moldovean and Vasile Chiş
Int. J. Mol. Sci. 2021, 22(16), 9025; https://doi.org/10.3390/ijms22169025 - 21 Aug 2021
Cited by 4 | Viewed by 3875
Abstract
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization [...] Read more.
Mutant huntingtin (m-HTT) proteins and calmodulin (CaM) co-localize in the cerebral cortex with significant effects on the intracellular calcium levels by altering the specific calcium-mediated signals. Furthermore, the mutant huntingtin proteins show great affinity for CaM that can lead to a further stabilization of the mutant huntingtin aggregates. In this context, the present study focuses on describing the interactions between CaM and two huntingtin mutants from a biophysical point of view, by using classical Molecular Dynamics techniques. The huntingtin models consist of a wild-type structure, one mutant with 45 glutamine residues and the second mutant with nine additional key-point mutations from glutamine residues into proline residues (9P(EM) model). Our docking scores and binding free energy calculations show higher binding affinities of all HTT models for the C-lobe end of the CaM protein. In terms of dynamic evolution, the 9P(EM) model triggered great structural changes into the CaM protein’s structure and shows the highest fluctuation rates due to its structural transitions at the helical level from α-helices to turns and random coils. Moreover, our proposed 9P(EM) model suggests much lower interaction energies when compared to the 45Qs-HTT mutant model, this finding being in good agreement with the 9P(EM)’s antagonistic effect hypothesis on highly toxic protein–protein interactions. Full article
(This article belongs to the Collection Feature Papers in Molecular Biophysics)
Show Figures

Graphical abstract

13 pages, 30675 KiB  
Article
Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE
by Meili Liu, Zhe Huai, Hongwei Tan and Guangju Chen
Int. J. Mol. Sci. 2021, 22(13), 6999; https://doi.org/10.3390/ijms22136999 - 29 Jun 2021
Cited by 1 | Viewed by 2564
Abstract
AMPylation is a prevalent posttranslational modification that involves the addition of adenosine monophosphate (AMP) to proteins. Exactly how Huntingtin-associated yeast-interacting protein E (HYPE), as the first human protein, is involved in the transformation of the AMP moiety to its substrate target protein (the [...] Read more.
AMPylation is a prevalent posttranslational modification that involves the addition of adenosine monophosphate (AMP) to proteins. Exactly how Huntingtin-associated yeast-interacting protein E (HYPE), as the first human protein, is involved in the transformation of the AMP moiety to its substrate target protein (the endoplasmic reticulum chaperone binding to immunoglobulin protein (BiP)) is still an open question. Additionally, a conserved glutamine plays a vital key role in the AMPylation reaction in most filamentation processes induced by the cAMP (Fic) protein. In the present work, the detailed catalytic AMPylation mechanisms in HYPE were determined based on the density functional theory (DFT) method. Molecular dynamics (MD) simulations were further used to investigate the exact role of the inhibitory glutamate. The metal center, Mg2+, in HYPE has been examined in various coordination configurations, including 4-coordrinated, 5-coordinated and 6-coordinated. DFT calculations revealed that the transformation of the AMP moiety of HYPE with BiP followed a sequential pathway. The model with a 4-coordinated metal center had a barrier of 14.7 kcal/mol, which was consistent with the experimental value and lower than the 38.7 kcal/mol barrier of the model with a 6-coordinated metal center and the 31.1 kcal/mol barrier of the model with a 5-coordinated metal center. Furthermore, DFT results indicated that Thr518 residue oxygen directly attacks the phosphorus, while the His363 residue acts as H-bond acceptor. At the same time, an MD study indicated that Glu234 played an inhibitory role in the α-inhibition helix by regulating the hydrogen bond interaction between Arg374 and the Pγ of the ATP molecule. The revealed sequential pathway and the inhibitory role of Glu234 in HYPE were inspirational for understanding the catalytic and inhibitory mechanisms of Fic-mediated AMP transfer, paving the way for further studies on the physiological role of Fic enzymes. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

27 pages, 103523 KiB  
Article
In Silico Analysis of Huntingtin Homologs in Lower Eukaryotes
by Valentina Brandi and Fabio Polticelli
Int. J. Mol. Sci. 2021, 22(6), 3214; https://doi.org/10.3390/ijms22063214 - 22 Mar 2021
Cited by 1 | Viewed by 2626
Abstract
Huntington’s disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt [...] Read more.
Huntington’s disease is a rare neurodegenerative and autosomal dominant disorder. HD is caused by a mutation in the gene coding for huntingtin (Htt). The result is the production of a mutant Htt with an abnormally long polyglutamine repeat that leads to pathological Htt aggregates. Although the structure of human Htt has been determined, albeit at low resolution, its functions and how they are performed are largely unknown. Moreover, there is little information on the structure and function of Htt in other organisms. The comparison of Htt homologs can help to understand if there is a functional conservation of domains in the evolution of Htt in eukaryotes. In this work, through a computational approach, Htt homologs from lower eukaryotes have been analysed, identifying ordered domains and modelling their structure. Based on the structural models, a putative function for most of the domains has been predicted. A putative C. elegans Htt-like protein has also been analysed following the same approach. The results obtained support the notion that this protein is a orthologue of human Htt. Full article
(This article belongs to the Special Issue Molecular Basis and Molecular Targets in Huntington’s Disease)
Show Figures

Figure 1

20 pages, 29018 KiB  
Article
The Role of Low Complexity Regions in Protein Interaction Modes: An Illustration in Huntingtin
by Kristina Kastano, Pablo Mier and Miguel A. Andrade-Navarro
Int. J. Mol. Sci. 2021, 22(4), 1727; https://doi.org/10.3390/ijms22041727 - 9 Feb 2021
Cited by 16 | Viewed by 4193
Abstract
Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees [...] Read more.
Low complexity regions (LCRs) are very frequent in protein sequences, generally having a lower propensity to form structured domains and tending to be much less evolutionarily conserved than globular domains. Their higher abundance in eukaryotes and in species with more cellular types agrees with a growing number of reports on their function in protein interactions regulated by post-translational modifications. LCRs facilitate the increase of regulatory and network complexity required with the emergence of organisms with more complex tissue distribution and development. Although the low conservation and structural flexibility of LCRs complicate their study, evolutionary studies of proteins across species have been used to evaluate their significance and function. To investigate how to apply this evolutionary approach to the study of LCR function in protein–protein interactions, we performed a detailed analysis for Huntingtin (HTT), a large protein that is a hub for interaction with hundreds of proteins, has a variety of LCRs, and for which partial structural information (in complex with HAP40) is available. We hypothesize that proteins RASA1, SYN2, and KAT2B may compete with HAP40 for their attachment to the core of HTT using similar LCRs. Our results illustrate how evolution might favor the interplay of LCRs with domains, and the possibility of detecting multiple modes of LCR-mediated protein–protein interactions with a large hub such as HTT when enough protein interaction data is available. Full article
(This article belongs to the Special Issue Molecular Basis and Molecular Targets in Huntington’s Disease)
Show Figures

Figure 1

18 pages, 12145 KiB  
Article
Intrastriatal Administration of AAV5-miHTT in Non-Human Primates and Rats Is Well Tolerated and Results in miHTT Transgene Expression in Key Areas of Huntington Disease Pathology
by Elisabeth A. Spronck, Astrid Vallès, Margit H. Lampen, Paula S. Montenegro-Miranda, Sonay Keskin, Liesbeth Heijink, Melvin M. Evers, Harald Petry, Sander J. van Deventer, Pavlina Konstantinova and Martin de Haan
Brain Sci. 2021, 11(2), 129; https://doi.org/10.3390/brainsci11020129 - 20 Jan 2021
Cited by 36 | Viewed by 7151
Abstract
Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype [...] Read more.
Huntington disease (HD) is a fatal, neurodegenerative genetic disorder with aggregation of mutant Huntingtin protein (mutHTT) in the brain as a key pathological mechanism. There are currently no disease modifying therapies for HD; however, HTT-lowering therapies hold promise. Recombinant adeno-associated virus serotype 5 expressing a microRNA that targets HTT mRNA (AAV5-miHTT) is in development for the treatment of HD with promising results in rodent and minipig HD models. To support a clinical trial, toxicity studies were performed in non-human primates (NHP, Macaca fascicularis) and Sprague-Dawley rats to evaluate the safety of AAV5-miHTT, the neurosurgical administration procedure, vector delivery and expression of the miHTT transgene during a 6-month observation period. For accurate delivery of AAV5-miHTT to the striatum, real-time magnetic resonance imaging (MRI) with convection-enhanced delivery (CED) was used in NHP. Catheters were successfully implanted in 24 NHP, without neurological symptoms, and resulted in tracer signal in the target areas. Widespread vector DNA and miHTT transgene distribution in the brain was found, particularly in areas associated with HD pathology. Intrastriatal administration of AAV5-miHTT was well tolerated with no clinically relevant changes in either species. These studies demonstrate the excellent safety profile of AAV5-miHTT, the reproducibility and tolerability of intrastriatal administration, and the delivery of AAV5-miHTT to the brain, which support the transition of AAV5-miHTT into clinical studies. Full article
Show Figures

Figure 1

9 pages, 656 KiB  
Communication
Subcortical T1-Rho MRI Abnormalities in Juvenile-Onset Huntington’s Disease
by Alexander V. Tereshchenko, Jordan L. Schultz, Ansley J. Kunnath, Joel E. Bruss, Eric A. Epping, Vincent A. Magnotta and Peg C. Nopoulos
Brain Sci. 2020, 10(8), 533; https://doi.org/10.3390/brainsci10080533 - 8 Aug 2020
Cited by 7 | Viewed by 3239
Abstract
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene. An increased CAG repeat length is associated with an earlier disease onset. About 5% of HD cases occur under the age of 21 [...] Read more.
Huntington’s disease (HD) is a fatal neurodegenerative disease caused by the expansion of cytosine-adenine-guanine (CAG) repeats in the huntingtin gene. An increased CAG repeat length is associated with an earlier disease onset. About 5% of HD cases occur under the age of 21 years, which are classified as juvenile-onset Huntington’s disease (JOHD). Our study aims to measure subcortical metabolic abnormalities in JOHD participants. T1-Rho (T) MRI was used to compare brain regions of 13 JOHD participants and 39 controls. Region-of-interest analyses were used to assess differences in quantitative T relaxation times. We found that the mean relaxation times in the caudate (p < 0.001), putamen (p < 0.001), globus pallidus (p < 0.001), and thalamus (p < 0.001) were increased in JOHD participants compared to controls. Furthermore, increased T relaxation times in these areas were significantly associated with lower volumes amongst participants in the JOHD group. These findings suggest metabolic abnormalities in brain regions previously shown to degenerate in JOHD. We also analyzed the relationships between mean regional T relaxation times and Universal Huntington’s Disease Rating Scale (UHDRS) scores. UHDRS was used to evaluate participants’ motor function, cognitive function, behavior, and functional capacity. Mean T relaxation times in the caudate (p = 0.003), putamen (p = 0.005), globus pallidus (p = 0.009), and thalamus (p = 0.015) were directly proportional to the UHDRS score. This suggests that the T relaxation time may also predict HD-related motor deficits. Our findings suggest that subcortical metabolic abnormalities drive the unique hypokinetic symptoms in JOHD. Full article
(This article belongs to the Special Issue Juvenile Onset Huntington's Disease)
Show Figures

Figure 1

12 pages, 2433 KiB  
Article
HIP1R Expression and Its Association with PD-1 Pathway Blockade Response in Refractory Advanced NonSmall Cell Lung Cancer: A Gene Set Enrichment Analysis
by Young Wha Koh, Jae-Ho Han, Seokjin Haam and Hyun Woo Lee
J. Clin. Med. 2020, 9(5), 1425; https://doi.org/10.3390/jcm9051425 - 11 May 2020
Cited by 7 | Viewed by 3313
Abstract
Huntingtin-interacting protein 1-related protein (HIP1R) plays an important role in the regulation of programmed death-ligand 1 (PD-L1). The aim of this study was to investigate the expression of HIP1R and confirm its predictive or prognostic roles in anti-PD-1 therapy in nonsmall cell lung [...] Read more.
Huntingtin-interacting protein 1-related protein (HIP1R) plays an important role in the regulation of programmed death-ligand 1 (PD-L1). The aim of this study was to investigate the expression of HIP1R and confirm its predictive or prognostic roles in anti-PD-1 therapy in nonsmall cell lung cancer (NSCLC) patients. HIP1R and PD-L1 immunohistochemical expression was examined in 52 refractory advanced NSCLC patients treated with anti-PD-1 inhibitors. We performed gene set enrichment analysis (GSEA) to detect HIP1R-specific gene sets. Patients in the PD-1 inhibitor responder group had lower HIP1R expression by univariate logistic regression analysis (odds ratio (OR) = 0.235, p = 0.015) and multivariate logistic regression analysis (OR = 0.209, p = 0.014). Patients with high HIP1R expression had poorer progression-free survival (PFS) than patients with low HIP1R expression in univariate analysis (p = 0.037) and multivariate Cox analysis (hazard ratio = 2.098, p = 0.019). The web-based mRNA dataset also showed that high HIP1R expression correlated with inferior overall survival in lung adenocarcinoma (p = 0.026). GSEA revealed that HIP1R levels correlate with a set of genes that reflect PD-L1-related immune pathways. HIP1R expression may be a promising predictor for determination of patient responses to anti-PD-1 treatment. Full article
Show Figures

Figure 1

13 pages, 1262 KiB  
Review
Huntingtin Lowering Strategies
by Franz Marxreiter, Judith Stemick and Zacharias Kohl
Int. J. Mol. Sci. 2020, 21(6), 2146; https://doi.org/10.3390/ijms21062146 - 20 Mar 2020
Cited by 35 | Viewed by 7102
Abstract
Trials using antisense oligonucleotide technology to lower Huntingtin levels in Huntington’s disease (HD) are currently ongoing. This progress, taking place only 27 years after the identification of the Huntingtin gene (HTT) in 1993 reflects the enormous development in genetic engineering in [...] Read more.
Trials using antisense oligonucleotide technology to lower Huntingtin levels in Huntington’s disease (HD) are currently ongoing. This progress, taking place only 27 years after the identification of the Huntingtin gene (HTT) in 1993 reflects the enormous development in genetic engineering in the last decades. It is also the result of passionate basic scientific work and large worldwide registry studies that have advanced the understanding of HD. Increased knowledge of the pathophysiology of this autosomal dominantly inherited CAG-repeat expansion mediated neurodegenerative disease has led to the development of several putative treatment strategies, currently under investigation. These strategies span the whole spectrum of potential targets from genome editing via RNA interference to promoting protein degradation. Yet, recent studies revealed the importance of huntingtin RNA in the pathogenesis of the disease. Therefore, huntingtin-lowering by means of RNA interference appears to be a particular promising strategy. As a matter of fact, these approaches have entered, or are on the verge of entering, the clinical trial period. Here, we provide an overview of huntingtin-lowering approaches via DNA or RNA interference in present clinical trials as well as strategies subject to upcoming therapeutic options. We furthermore discuss putative implications for future treatment of HD patients. Full article
(This article belongs to the Special Issue CNS Drug Action in Neurodegenerative Diseases)
Show Figures

Figure 1

24 pages, 4075 KiB  
Article
Juvenile Huntington’s Disease Skin Fibroblasts Respond with Elevated Parkin Level and Increased Proteasome Activity as a Potential Mechanism to Counterbalance the Pathological Consequences of Mutant Huntingtin Protein
by Azzam Aladdin, Róbert Király, Pal Boto, Zsolt Regdon and Krisztina Tar
Int. J. Mol. Sci. 2019, 20(21), 5338; https://doi.org/10.3390/ijms20215338 - 26 Oct 2019
Cited by 19 | Viewed by 6494
Abstract
Huntington’s disease (HD) is an inherited neurodegenerative disorder, caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin protein (Htt). Mitochondrial dysfunction and impairment of the ubiquitin-proteasome system (UPS) are hallmarks of HD neurons. The extraneural manifestations of HD are still unclear. We [...] Read more.
Huntington’s disease (HD) is an inherited neurodegenerative disorder, caused by an abnormal polyglutamine (polyQ) expansion in the huntingtin protein (Htt). Mitochondrial dysfunction and impairment of the ubiquitin-proteasome system (UPS) are hallmarks of HD neurons. The extraneural manifestations of HD are still unclear. We investigated the crosstalk between mitochondria and proteolytic function in skin fibroblasts from juvenile HD patients. We found reduced mitosis, increased cell size, elevated ROS and increased mitochondrial membrane potential in juvenile HD fibroblasts, while cellular viability was maintained. Mitochondrial OXPHOS analysis did not reveal significant differences compared to control. However, the level of mitochondrial fusion and fission proteins was significantly lower and branching in the mitochondria network was reduced. We hypothesized that juvenile HD fibroblasts counterbalance cellular damage and mitochondrial network deficit with altered proteasome activity to promote cell survival. Our data reveal that juvenile HD fibroblasts exhibit higher proteasome activity, which was associated with elevated gene and protein expression of parkin. Moreover, we demonstrate elevated proteasomal degradation of the mitochondrial fusion protein Mfn1 in diseased cells compared to control cells. Our data suggest that juvenile HD fibroblasts respond to mutant polyQ expansion of Htt with enhanced proteasome activity and faster turnover of specific UPS substrates to protect cells. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop